

AS1056 - Mathematics for Actuarial Science. Chapter 7, Tutorial 2.

Emilio Luis Sáenz Guillén

Faculty of Actuarial Science
and Insurance,
Bayes Business School.

28/11/2024

The Riemann Sum

Let $f : [a, b] \rightarrow \mathbb{R}$ be a function defined on a closed interval $[a, b]$ of the real numbers, \mathbb{R} , and $P = (x_0, x_1, \dots, x_n)$ be a partition of $[a, b]$, that is,

$$a = x_0 < x_1 < x_2 < \dots < x_n = b$$

A **Riemann sum** S of f over $[a, b]$ with partition P is defined as

$$S(f, n) = \sum_{i=1}^n f(x_i^*) \Delta x_i$$

where $\Delta x_i = x_i - x_{i-1}$ and $x_i^* \in [x_{i-1}, x_i]$.

It is often convenient to work with equal-sized partitions, i.e.,

$$\Delta x_i = \frac{b-a}{n}, \quad i = 1, \dots, n.$$

One might produce different Riemann sums depending on which x_i^* 's are chosen. In particular,

One might produce different Riemann sums depending on which x_i^* 's are chosen. In particular,

- If $f(x_i^*) = \inf f([x_{i-1}, x_i])$ (i.e. the smallest f over $[x_{i-1}, x_i]$):

$$S_{\text{lower}}(f, n) = \sum_{i=1}^n \inf f([x_{i-1}, x_i]) \Delta x_i = \frac{b-a}{n} \sum_{i=1}^n f_i^{\text{low}}$$

under equal-sized partitions

→ **Lower Riemann sum**

One might produce different Riemann sums depending on which x_i^* 's are chosen. In particular,

- If $f(x_i^*) = \inf f([x_{i-1}, x_i])$ (i.e. the smallest f over $[x_{i-1}, x_i]$):

$$S_{\text{lower}}(f, n) = \sum_{i=1}^n \inf f([x_{i-1}, x_i]) \Delta x_i = \frac{b-a}{n} \sum_{i=1}^n f_i^{\text{Low}}$$

under equal-sized partitions

→ **Lower Riemann sum**

- If $f(x_i^*) = \sup f([x_{i-1}, x_i])$ (i.e. the largest f over $[x_{i-1}, x_i]$)

$$S_{\text{upper}}(f, n) = \sum_{i=1}^n \sup f([x_{i-1}, x_i]) \Delta x_i = \frac{b-a}{n} \sum_{i=1}^n f_i^{\text{High}}$$

under equal-sized partitions

→ **Upper Riemann sum**

The Riemann Integral

Definition

Let $f : [a, b] \rightarrow \mathbb{R}$ be a bounded function, i.e. there is an $M \in \mathbb{R}$ such that $|f(x)| \leq M$ for all $x \in [a, b]$.

The function f is said to be **Riemann integrable** if its lower and upper integrals are the same, that is, if both lower and upper Riemann sums converge to the same value.

When this happens we define:

$$\int_a^b f(x)dx = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i^*) \Delta x_i = \underbrace{\lim_{n \rightarrow \infty} S_{\text{lower}}(f, n)}_{= \underline{\int_a^b f(x)dx}} = \underbrace{\lim_{n \rightarrow \infty} S_{\text{upper}}(f, n)}_{= \overline{\int_a^b f(x)dx}}.$$

The Riemann Integral

Alternative definition

The function $f : [a, b] \rightarrow \mathbb{R}$ is said to be **Riemann integrable** if there exists a number $L = \int_a^b f(x)dx \in \mathbb{R}$ such that for any $\varepsilon > 0$, there exists some $n_0(f) > 0$, such that for $n > n_0(f)$, $|S(f, n) - L| < \varepsilon$ holds.

The Riemann Integral

Alternative definition

The function $f : [a, b] \rightarrow \mathbb{R}$ is said to be **Riemann integrable** if there exists a number $L = \int_a^b f(x)dx \in \mathbb{R}$ such that for any $\varepsilon > 0$, there exists some $n_0(f) > 0$, such that for $n > n_0(f)$, $|S(f, n) - L| < \varepsilon$ holds.

This implies that if f is Riemann integrable, for any $\varepsilon > 0$ we can find $n_0(f)$ such that for $n > n_0(f)$:

$$\rightarrow \underbrace{\int_a^b f(x)dx - S_{\text{lower}}(f, n)}_{>0} < \varepsilon$$

$$\rightarrow \underbrace{S_{\text{upper}}(f, n) - \int_a^b f(x)dx}_{>0} < \varepsilon$$

Exercise 7.8

If f and g are Riemann integrable, let $S_{\text{lower}}(f, n)$, $S_{\text{upper}}(f, n)$, $S_{\text{lower}}(g, n)$ and $S_{\text{upper}}(g, n)$ be the lower and upper Riemann sums for f and g respectively when calculating $\int_0^1 f(x)dx$ and $\int_0^1 g(x)dx$ using n sub-intervals.

- (i) What could you use for the lower and upper Riemann sums for $\int_0^1 (f(x) - g(x)) dx$
- (ii) Can you use a limiting procedure as $n \rightarrow \infty$ to prove that

$$\int_0^1 (f(x) - g(x)) dx = \int_0^1 f(x)dx - \int_0^1 g(x)dx ?$$

Additional exercise

(i) For $K > 0$, calculate

$$\int_{-K}^K x \exp\left(-\frac{1}{2}x^2\right) dx$$

(ii) Given that

$$\int_{-\infty}^{\infty} \exp\left(-\frac{1}{2}x^2\right) dx = \sqrt{2\pi}$$

calculate

$$\int_{-\infty}^{\infty} x \exp\left(-\frac{1}{2}(x - \mu)^2\right) dx$$

and

$$\int_{-\infty}^{\infty} (x - \mu)^2 \exp\left(-\frac{1}{2}(x - \mu)^2\right) dx.$$

Bayes Business School

106 Bunhill Row

London EC1Y 8TZ

Tel +44 (0)20 7040 8600

bayes.city.ac.uk