

AS1056 - Chapter 7, Tutorial 2. 28-11-2024. Notes.

Exercise 7.8 If f and g are Riemann integrable, let $S_{\text{lower}}(f, n)$, $S_{\text{upper}}(f, n)$, $S_{\text{lower}}(g, n)$ and $S_{\text{upper}}(g, n)$ be the lower and upper Riemann sums for f and g , respectively, when calculating $\int_0^1 f(x)dx$ and $\int_0^1 g(x)dx$ using the subintervals of n .

- (i) What could you use for the lower and upper Riemann sums for $\int_0^1 (f(x) - g(x)) dx$
- (ii) Can you use a limiting procedure as $n \rightarrow \infty$ to prove that

$$\int_0^1 (f(x) - g(x)) dx = \int_0^1 f(x)dx - \int_0^1 g(x)dx ?$$

Solution:

- f and g are Riemann-integrable over $[0, 1]$ (note that this does not mean that $f - g$ is Riemann-integrable).
- $S_{\text{lower}}(f, n)$, $S_{\text{upper}}(f, n)$, $S_{\text{lower}}(g, n)$, $S_{\text{upper}}(g, n)$

Thus, what we are asking is similar to what the lecture notes provide, but in this case, for $a = 1$.

- (i) Over the generic interval $\left[\frac{i-1}{n}, \frac{i}{n}\right]$ we know that:

$$\begin{cases} f_{i,\text{lower}} \leq f(x) \leq f_{i,\text{upper}} \\ g_{i,\text{lower}} \leq g(x) \leq g_{i,\text{upper}} \end{cases} \implies -g_{i,\text{upper}} \leq -g(x) \leq -g_{i,\text{lower}}$$

Therefore, over $\left[\frac{i-1}{n}, \frac{i}{n}\right]$, it is also true that:

$$f_{i,\text{lower}} - g_{i,\text{upper}} \leq f(x) - g(x) \leq f_{i,\text{upper}} - g_{i,\text{lower}}.$$

Summing up $f_{i,\text{lower}} - g_{i,\text{upper}}$ over n (equidistant) sub-intervals we see that what we can use for the lower Riemann sum for $f - g$ is:

$$\frac{1}{n} \sum_{i=1}^n (f_{i,\text{lower}} - g_{i,\text{upper}}) = \frac{1}{n} \sum_{i=1}^n f_{i,\text{lower}} - \frac{1}{n} \sum_{i=1}^n g_{i,\text{upper}} = S_{\text{lower}}(f, n) - S_{\text{upper}}(g, n)$$

by linearity

Similarly, we see that what we can use for the upper Riemann sum for $f - g$ is:

$$\frac{1}{n} \sum_{i=1}^n (f_{i,\text{upper}} - g_{i,\text{lower}}) = S_{\text{upper}}(f, n) - S_{\text{lower}}(g, n).$$

Let me briefly refer to the illustrative example that you have at the beginning of your lecture notes, that presented Riemann sums as the ‘sum of rectangles’: in here the width of each of our ‘rectangles’ is just the length of each of the n sub-intervals that we have over the interval $[0, 1]$, which is equal to $\frac{1-0}{n} = \frac{1}{n}$; the height of each ‘rectangle’ is just $f_{i,\text{upper}} - g_{i,\text{lower}}$, for $i = 1, \dots, n$.

(ii) By construction of the Riemann sums we always have that:

$$S_{\text{lower}}(f, n) \leq \int_0^1 f(x)dx \leq S_{\text{upper}}(f, n) \quad (1)$$

Indeed, note that if you always choose the smallest value of the function on each interval, the Riemann sum $S_{\text{lower}}(f, n)$ must be an underestimate of the Riemann integral $\int_0^1 f(x)dx$. If you choose the largest value of the function on each interval, you will get an overestimate, $S_{\text{upper}}(f, n)$, of $\int_0^1 f(x)dx$.

Moreover, because f is Riemann integrable we know that:

$$\begin{cases} \lim_{n \rightarrow \infty} S_{\text{lower}}(f, n) = \int_0^1 f(x)dx \\ \lim_{n \rightarrow \infty} S_{\text{upper}}(f, n) = \int_0^1 f(x)dx \end{cases}$$

In other words, and using the ‘alternative definition’ provided in the slides, for any $\varepsilon > 0$ there exists some $n_0(f)$, such that for $n > n_0(f)$:

$$\begin{cases} \int_0^1 f(x)dx - S_{\text{lower}}(f, n) < \varepsilon/2 \implies \int_0^1 f(x)dx - \varepsilon/2 < S_{\text{lower}}(f, n) \\ S_{\text{upper}}(f, n) - \int_0^1 f(x)dx < \varepsilon/2 \implies S_{\text{upper}}(f, n) < \int_0^1 f(x)dx + \varepsilon/2 \end{cases} \quad (2)$$

Hence, combining 1 and 2, for $n > n_0(f)$ we have that:

$$\int_0^1 f(x)dx - \varepsilon/2 < S_{\text{lower}}(f, n) \leq \int_0^1 f(x)dx \leq S_{\text{upper}}(f, n) < \int_0^1 f(x)dx + \varepsilon/2 \quad (3)$$

Similarly, because g is Riemann integrable, for any $\varepsilon > 0$ we can find $n_0(g)$ such that for $n > n_0(g)$:

$$\int_0^1 g(x)dx - \varepsilon/2 < S_{\text{lower}}(g, n) \leq \int_0^1 g(x)dx \leq S_{\text{upper}}(g, n) < \int_0^1 g(x)dx + \varepsilon/2$$

or,

$$-\int_0^1 g(x)dx - \varepsilon/2 < -S_{\text{upper}}(g, n) \leq -\int_0^1 g(x)dx \leq -S_{\text{lower}}(g, n) < -\int_0^1 g(x)dx + \varepsilon/2 \quad (4)$$

Therefore, combining 3 and 4, we can conclude that as long as $n > \max\{n_0(f), n_0(g)\}$ ¹, we have that:

$$\begin{aligned} \int_0^1 f(x)dx - \int_0^1 g(x)dx - \varepsilon &< \underbrace{S_{\text{lower}}(f, n) - S_{\text{upper}}(g, n)}_{\text{Riemann lower sum of } f - g} \leq \\ &\leq \int_0^1 f(x)dx - \int_0^1 g(x)dx \\ &\leq \underbrace{S_{\text{upper}}(f, n) - S_{\text{lower}}(g, n)}_{\text{Riemann upper sum of } f - g} < \int_0^1 f(x)dx - \int_0^1 g(x)dx + \varepsilon \end{aligned} \quad (5)$$

¹Saying $n \geq \max\{n_0(f), n_0(g)\}$ is the same as saying ‘for both $n > n_0(f)$ and $n > n_0(g)$ ’. And note 3 needs $n > n_0(f)$ to hold and 4 needs $n > n_0(g)$ to hold.

Note that we just got $\int_0^1 f(x)dx - \int_0^1 g(x)dx$ bounded by the Riemann lower and upper sums we derived in (i). Recall that the results obtained in (i) imply:

$$S_{\text{lower}}(f, n) - S_{\text{upper}}(g, n) \leq \int_0^1 (f(x) - g(x)) \leq S_{\text{upper}}(f, n) - S_{\text{lower}}(g, n) \quad (6)$$

Combine 5 and 6 and note that we obtain:

$$\int_0^1 f(x)dx - \int_0^1 g(x)dx - \varepsilon < \int_0^1 (f(x) - g(x)) < \int_0^1 f(x)dx - \int_0^1 g(x)dx + \varepsilon$$

that is,

$$\left| \int_0^1 (f(x) - g(x)) dx - \left(\int_0^1 f(x) dx - \int_0^1 g(x) dx \right) \right| < \varepsilon$$

Hence, and since ε can be whatever positive number we want, letting $\varepsilon \rightarrow 0$, we get the desired result:

$$\int_0^1 f(x)dx - \int_0^1 g(x)dx = \int_0^1 (f(x) - g(x)) .$$

Alternatively, we could also have reasoned as follows. Given that:

$$\begin{cases} S_{\text{lower}}(f, n) - S_{\text{upper}}(g, n) \leq \int_0^1 (f(x) - g(x)) dx \leq S_{\text{upper}}(f, n) - S_{\text{lower}}(g, n) \\ S_{\text{lower}}(f, n) - S_{\text{upper}}(g, n) \leq \int_0^1 f(x) dx - \int_0^1 g(x) dx \leq S_{\text{upper}}(f, n) - S_{\text{lower}}(g, n) \end{cases}$$

we can take the limit on both sides and by Riemann integrability conclude that since:

$$\left\{ \begin{array}{l} \lim_{n \rightarrow \infty} (S_{\text{lower}}(f, n) - S_{\text{upper}}(g, n)) = \lim_{n \rightarrow \infty} S_{\text{lower}}(f, n) - \lim_{n \rightarrow \infty} S_{\text{upper}}(g, n) = S(f, n) - S(g, n) \\ \qquad \qquad \qquad \text{by linearity of the lim} \qquad \qquad \qquad \text{by Riemann integrability} \\ \lim_{n \rightarrow \infty} (S_{\text{upper}}(f, n) - S_{\text{lower}}(g, n)) = \lim_{n \rightarrow \infty} S_{\text{upper}}(f, n) - \lim_{n \rightarrow \infty} S_{\text{lower}}(g, n) = S(f, n) - S(g, n) \\ \qquad \qquad \qquad \text{by linearity of the lim} \qquad \qquad \qquad \text{by Riemann integrability} \end{array} \right.$$

it must be the case that:

$$\implies \int_0^1 f(x)dx - \int_0^1 g(x)dx = \int_0^1 (f(x) - g(x)) .$$

Additional exercise.

(i) For $K > 0$, calculate

$$\int_{-K}^K x \exp\left(-\frac{1}{2}x^2\right) dx$$

Note that,

$$\frac{d}{dx} \exp\left(-\frac{1}{2}x^2\right) = -\frac{d}{dx} \underbrace{\exp\left(-\frac{1}{2}x^2\right)}_{=-x \exp\left(-\frac{1}{2}x^2\right)} = x \exp\left(-\frac{1}{2}x^2\right)$$

thus,

$$\int_{-K}^K x \exp\left(-\frac{1}{2}x^2\right) dx = \left[-\exp\left(-\frac{1}{2}x^2\right) \right]_{-K}^K = \exp\left(\underbrace{-\frac{1}{2}(-K)^2}_{<0}\right) - \exp\left(\underbrace{-\frac{1}{2}K^2}_{<0}\right) \xrightarrow{K \rightarrow \infty} 0$$

(ii) Given that

$$\int_{-\infty}^{\infty} \exp\left(-\frac{1}{2}x^2\right) dx = \sqrt{2\pi}$$

calculate:

1.

$$\int_{-\infty}^{\infty} x \exp\left(-\frac{1}{2}(x-\mu)^2\right) dx$$

Let us use the following substitution:

$$y = g(x) = x - \mu; \quad g(x = \infty) = \infty,$$

$$dy = dx; \quad g(x = -\infty) = -\infty$$

$$\begin{aligned} \int_{-\infty}^{\infty} x \exp\left(-\frac{1}{2}(x-\mu)^2\right) dx &= \int_{-\infty}^{\infty} (y + \mu) \exp\left(-\frac{1}{2}y^2\right) dy = \\ \underbrace{\int_{-\infty}^{\infty} y \exp\left(-\frac{1}{2}y^2\right) dy}_{=0 \text{ (see (i))}} + \mu \underbrace{\int_{-\infty}^{\infty} \exp\left(-\frac{1}{2}y^2\right) dy}_{=\sqrt{2\pi}} &= \mu\sqrt{2\pi}. \end{aligned}$$

2. Applying the same substitution as in 1:

$$\int_{-\infty}^{\infty} y^2 \exp\left(-\frac{1}{2}(x-\mu)^2\right) dx = \int_{-\infty}^{\infty} \underbrace{y^2}_{=y \times y} \exp\left(-\frac{1}{2}y^2\right) dy.$$

We will need to apply integration by parts. Consider,

$$u = y; du = dy$$

$$dv = y \exp\left(-\frac{1}{2}y^2\right) dy; v = -\exp\left(-\frac{1}{2}y^2\right)$$

then,

$$\begin{aligned}
\int_{-\infty}^{\infty} y^2 \exp\left(-\frac{1}{2}(x-\mu)^2\right) dx &= \int_{-\infty}^{\infty} \underbrace{y^2}_{=y \times y} \exp\left(-\frac{1}{2}y^2\right) dy = \\
&= \left[-y \exp\left(-\frac{1}{2}y^2\right) \right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \exp\left(-\frac{1}{2}y^2\right) dy = \\
&= \underbrace{\lim_{y \rightarrow -\infty} y \exp\left(-\frac{1}{2}y^2\right)}_{=0} - \underbrace{\lim_{y \rightarrow \infty} y \exp\left(-\frac{1}{2}y^2\right)}_{=0} + \sqrt{2\pi} = \sqrt{2\pi}.
\end{aligned}$$