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Exercise 7.8 If f and g are Riemann integrable, let Slower(f, n), Supper(f, n), Slower(g, n) and
Supper(g, n) be the lower and upper Riemann sums for f and g, respectively, when calculating∫ 1

0 f(x)dx and
∫ 1

0 g(x)dx using the subintervals of n.

(i) What could you use for the lower and upper Riemann sums for
∫ 1

0 (f(x) − g(x)) dx

(ii) Can you use a limiting procedure as n → ∞ to prove that∫ 1

0
(f(x) − g(x)) dx =

∫ 1

0
f(x)dx −

∫ 1

0
g(x)dx ?

Solution:

• f and g are Riemann-integrable over [0, 1] (note that this does not mean that f − g is Riemann-
integrable).

• Slower(f, n), Supper(f, n), Slower(g, n), Supper(g, n)

Thus, what we are asking is similar to what the lecture notes provide, but in this case, for a = 1.

(i) Over the generic interval
[

i−1
n , i

n

]
we know that:{

fi,lower ≤ f(x) ≤ fi,upper

gi,lower ≤ g(x) ≤ gi,upper =⇒ −gi,upper ≤ −g(x) ≤ −gi,lower

Therefore, over
[

i−1
n , i

n

]
, it is also true that:

fi,lower − gi,upper ≤ f(x) − g(x) ≤ fi,upper − gi,lower.

Summing up fi,lower − gi,upper over n (equidistant) sub-intervals we see that what we can use
for the lower Riemann sum for f − g is:

1
n

n∑
i=1

(fi,lower − gi,upper) =
↑

by linearity

1
n

n∑
i=1

fi,lower − 1
n

n∑
i=1

gi,upper = Slower(f, n) − Supper(g, n)

Similarly, we see that what we can use for the upper Riemann sum for f − g is:

1
n

n∑
i=1

(fi,upper − gi,lower) = Supper(f, n) − Slower(g, n).

Let me briefly refer to the illustrative example that you have at the beginning of your lecture
notes, that presented Riemann sums as the ‘sum of rectangles’: in here the width of each of
our ‘rectangles’ is just the length of each of the n sub-intervals that we have over the interval
[0, 1], which is equal to 1−0

n = 1
n ; the height of each ‘rectangle’ is just fi,upper − gi,lower, for

i = 1, ..., n.
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(ii) By construction of the Riemann sums we always have that:

Slower(f, n) ≤
∫ 1

0
f(x)dx ≤ Supper(f, n) (1)

Indeed, note that if you always choose the smallest value of the function on each interval, the
Riemann sum Slower(f, n) must be an underestimate of the Riemann integral

∫ 1
0 f(x)dx. If

you choose the largest value of the function on each interval, you will get an overestimate,
Supper(f, n), of

∫ 1
0 f(x)dx.

Moreover, because f is Riemann integrable we know that:
lim

n→∞
Slower(f, n) =

∫ 1

0
f(x)dx

lim
n→∞

Supper(f, n) =
∫ 1

0
f(x)dx

In other words, and using the ‘alternative definition’ provided in the slides, for any ε > 0
there exists some n0(f), such that for n > n0(f):

∫ 1

0
f(x)dx − Slower(f, n) < ε/2 =⇒

∫ 1

0
f(x)dx − ε/2 < Slower(f, n)

Supper(f, n) −
∫ 1

0
f(x)dx < ε/2 =⇒ Supper(f, n) <

∫ 1

0
f(x)dx + ε/2

(2)

Hence, combining 1 and 2, for n > n0(f) we have that:∫ 1

0
f(x)dx − ε/2 < Slower(f, n) ≤

∫ 1

0
f(x)dx ≤ Supper(f, n) <

∫ 1

0
f(x)dx + ε/2 (3)

Similarly, because g is Riemann integrable , for any ε > 0 we can find n0(g) such that for
n > n0(g):∫ 1

0
g(x)dx − ε/2 < Slower(g, n) ≤

∫ 1

0
g(x)dx ≤ Supper(g, n) <

∫ 1

0
g(x)dx + ε/2

or,

−
∫ 1

0
g(x)dx − ε/2 < −Supper(g, n) ≤ −

∫ 1

0
g(x)dx ≤ −Slower(g, n) < −

∫ 1

0
g(x)dx + ε/2 (4)

Therefore, combining 3 and 4, we can conclude that as long as n > max{n0(f), n0(g)}1, we
have that:∫ 1

0
f(x)dx −

∫ 1

0
g(x)dx − ε < Slower(f, n) − Supper(g, n)︸ ︷︷ ︸

Riemann lower sum of f − g

≤

≤
∫ 1

0
f(x)dx −

∫ 1

0
g(x)dx (5)

≤ Supper(f, n) − Slower(g, n)︸ ︷︷ ︸
Riemann upper sum of f − g

<

∫ 1

0
f(x)dx −

∫ 1

0
g(x)dx + ε

1Saying n ≥ max{n0(f), n0(g)} is the same as saying ‘for both n > n0(f) and n > n0(g)’. And note 3 needs
n > n0(f) to hold and 4 needs n > n0(g) to hold.
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Note that we just got
∫ 1

0 f(x)dx −
∫ 1

0 g(x)dx bounded by the Riemann lower and upper sums
we derived in (i). Recall that the results obtained in (i) imply:

Slower(f, n) − Supper(g, n) ≤
∫ 1

0
(f(x) − g(x)) ≤ Supper(f, n) − Slower(g, n) (6)

Combine 5 and 6 and note that we obtain:∫ 1

0
f(x)dx −

∫ 1

0
g(x)dx − ε <

∫ 1

0
(f(x) − g(x)) <

∫ 1

0
f(x)dx −

∫ 1

0
g(x)dx + ε

that is, ∣∣∣∣∫ 1

0
(f(x) − g(x)) dx −

(∫ 1

0
f(x)dx −

∫ 1

0
g(x)dx

)∣∣∣∣ < ε

Hence, and since ε can be whatever positive number we want, letting ε → 0, we get the
desired result: ∫ 1

0
f(x)dx −

∫ 1

0
g(x)dx =

∫ 1

0
(f(x) − g(x)) .

Alternatively, we could also have reasoned as follows. Given that:
Slower(f, n) − Supper(g, n) ≤

∫ 1

0
(f(x) − g(x)) dx ≤ Supper(f, n) − Slower(g, n)

Slower(f, n) − Supper(g, n) ≤
∫ 1

0
f(x)dx −

∫ 1

0
g(x)dx ≤ Supper(f, n) − Slower(g, n)

we can take the limit on both sides and by Riemann integrability conclude that since:

lim
n→∞

(Slower(f, n) − Supper(g, n)) =
↑

by linearity of the lim

lim
n→∞

Slower(f, n) − lim
n→∞

Supper(g, n) =
↑

by Riemann integrability

S(f, n) − S(g, n)

lim
n→∞

(Supper(f, n) − Slower(g, n)) =
↑

by linearity of the lim

lim
n→∞

Supper(f, n) − lim
n→∞

Slower(g, n) =
↑

by Riemann integrability

S(f, n) − S(g, n)

it must be the case that:

=⇒
∫ 1

0
f(x)dx −

∫ 1

0
g(x)dx =

∫ 1

0
(f(x) − g(x)) .

3



Additional exercise.

(i) For K > 0, calculate ∫ K

−K
x exp

(
−1

2x2
)

dx

Note that,

d

dx
− exp

(
−1

2x2
)

= − d

dx
exp

(
−1

2x2
)

︸ ︷︷ ︸
=−x exp(− 1

2 x2)

= x exp
(

−1
2x2

)

thus,

∫ K

−K
x exp

(
−1

2x2
)

=
[
− exp

(
−1

2x2
)]K

−K
= exp

−1
2(−K)2︸ ︷︷ ︸

<0

 − exp

−1
2K2︸ ︷︷ ︸
<0

 K→∞−−−−→ 0

(ii) Given that ∫ ∞

−∞
exp

(
−1

2x2
)

dx =
√

2π

calculate:

1. ∫ ∞

−∞
x exp

(
−1

2(x − µ)2
)

dx

Let us use the following substitution:

y = g(x) = x − µ; g(x = ∞) = ∞,

dy = dx; g(x = −∞) = −∞

∫ ∞

−∞
x exp

(
−1

2(x − µ)2
)

dx =
∫ ∞

−∞
(y + µ) exp

(
−1

2y2
)

dy =∫ ∞

−∞
y exp

(
−1

2y2
)

dy︸ ︷︷ ︸
=0 (see (i))

+µ

∫ ∞

−∞
exp

(
−1

2y2
)

dy︸ ︷︷ ︸
=

√
2π

= µ
√

2π.

2. Applying the same substitution as in 1:∫ ∞

−∞
y2 exp

(
−1

2(x − µ)2
)

dx =
∫ ∞

−∞
y2︸︷︷︸

=y×y

exp
(

−1
2y2

)
dy.

We will need to apply integration by parts. Consider,

u = y; du = dy

dv = y exp
(

−1
2y2

)
dy; v = − exp

(
−1

2y2
)
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then,∫ ∞

−∞
y2 exp

(
−1

2(x − µ)2
)

dx =
∫ ∞

−∞
y2︸︷︷︸

=y×y

exp
(

−1
2y2

)
dy =

=
[
−y exp

(
−1

2y2
)]∞

−∞
+

∫ ∞

−∞
exp

(
−1

2y2
)

dy =

= lim
y→−∞

y exp
(

−1
2y2

)
︸ ︷︷ ︸

=0

− lim
y→∞

y exp
(

−1
2y2

)
︸ ︷︷ ︸

=0

+
√

2π =
√

2π.
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