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Exercise 6.7 A sequence is implicitly defined by the recursive equation an+1 = 16 + 1
2an and

has starting point a0 = 8.

(i) Write down the values of an for 1 ≤ n ≤ 4.

a1 = 16 + 1
2a0 = 20

a2 = 16 + 1
2a1 = 26

a3 = 16 + 1
2a2 = 29

a4 = 16 + 1
2a3 = 30.5

...

 a2 − a1 = 6 a3 − a2 = 3 a4 − a3 = 1.5

(ii) Identify the limit L of this sequence.
First, let us show that (an)n∈N is contractive and then we’ll apply the theorem in the tutorial
slides. That is, show there exists k ∈ [0, 1) s.t. |an+2 − an+1| ≤ k|an+1 − an| for all n ∈ N.

Proof.

|an+2 − an+1| =
∣∣∣∣��16 + 1

2an+1 −��16 − 1
2an

∣∣∣∣ =
∣∣∣∣1
2(an+1 − an)

∣∣∣∣ =

= 1
2������|an+1 − an| ≤ k ×������|an+1 − an|; 1

2 ≤ k < 1

and the proof is done since we’ve shown that such a k exists, in particular k ∈
[

1
2 , 1

)
.

Now, note that every contractive sequence is convergent (see theorem in tutorial notes) and thus
we can be sure that L exists, i.e., that the sequence has a limit. Thus, taking the limit on both
sides of our recursive equation, this simplifies to:

lim
n→∞

an+1︸ ︷︷ ︸
=L

= 16 + 1
2 lim

n→∞
an︸ ︷︷ ︸

=L

L = 16 + 1
2L; L = 32
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Alternatively —and without using any theorem—, we could have considered the following ap-
proach. Note,

a0 = 8

a1 = 16 + 1
2a0

a2 = 16 + 1
2a1 = 16 + 1

2

(
16 + 1

2a0

)
= 16 + 8 +

(1
2

)2
a0

a3 = 16 + 1
2a2 = 16 + 1

2

[
16 + 8 +

(1
2

)2
a0

]
= 16 + 8 + 4 +

(1
2

)3
a0 =

=
2∑

k=0

16
2k

+
(1

2

)3
a0 = 16

2∑
k=0

(1
2

)k

+
(1

2

)3
a0

...

an = 16
n−1∑
k=0

(1
2

)k

+
(1

2

)n

a0

−→ We’ve converted this “implicit definition of the recurrence“ that we were provided into a
closed, explicit formula. This is usually referred to as solving a recurrence relation.
And now, given the above explicit expression (and using geometric series formula), we can easily
calculate the limit:

lim
n→∞

an = lim
n→∞

16
n−1∑
k=0

(1
2

)k

+
(1

2

)n

a0 = 16
∞∑

k=0

(1
2

)k

︸ ︷︷ ︸
= 1

1− 1
2

=2

+ lim
n→∞

(1
2

)n

︸ ︷︷ ︸
→0

a0

︸ ︷︷ ︸
→0

= 32

(iii) Define bn = an − L. Write down an expression for bn and, for ε = 0.01, find a value of n0 such
that |bn| < ε whenever n ≥ n0.
In other words, we’re asked to apply the definition of limit of a sequence to prove that, indeed,
the limit of (an) is L = 32.
Let us start writing,

bn = an −
=32︷︸︸︷
L , i.e., an = 32 + bn

thus, the recursive equation for (bn) is:

bn+1 = an+1 − 32 = 16 + 1
2an − 32 = 1

2an − 16 = 1
2 (32 + bn) − 16 = ��16 + 1

2bn −��16 = 1
2bn.
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And recursively applying this recursive equation:

bn+1 = 1
2 bn︸︷︷︸

= 1
2 bn−1︸ ︷︷ ︸
= 1

2 bn−2︸ ︷︷ ︸
...


n times

we get that,

bn =
(1

2

)n

b0︸︷︷︸
a0−L=

=8−32=−24

= −24 ×
(1

2

)n

Now that we have (bn) in explicit form, from the definition of the limit of a sequence, to prove
that L = 32, we need to show that for any ε > 0 we can find some n0(ε) ∈ N s.t. ∀n ≥ n0(ε),
|an − L| = |bn| < ε holds.
So, we require,

|bn| < ε;
∣∣∣∣−24

(1
2

)n∣∣∣∣︸ ︷︷ ︸
=
↑

by symmetry property of abs. values

|24( 1
2 )n|

< ε; 24
(1

2

)n

< ε;
(1

2

)n

<
ε

24;

then,

n ln
(1

2

)
︸ ︷︷ ︸

=ln(1)−ln(2)=0−ln(2)

< ln
(

ε

24

)
; −n ln(2) < ln

(
ε

24

)
; n ln(2) > − ln

(
ε

24

)
;

n > − 1
ln(2) ln

(
ε

24

)
=
↑

for ε = 0.01

11.22881869

−→ Thus, n0(ε = 0.01) = 12. In other words, |an − L| = |bn| < ε = 0.01 holds as long as
n ≥ n0(ε = 0.01) = 12. And you can consider other values of ε, replace in − 1

ln(2) ln
(

ε
24

)
, and

then get n0(ε) to check that “for every natural number n ≥ n0(ε), we have |an − L| < ε”. And
this is basically the proof that L = 32.

Exercise 6.10

(i) Explain why if n ∈ N and x ≤ n, with x > 0, then n− 3
2 ≤

∫ n
n−1 x− 3

2 dx holds for n ≥ 2.
So, note that:

x ≤ n =⇒
↑

applying a monotonically increasing
function on both sides of the inequality
leaves the inequality unchanged

x3/2 ≤ n3/2; n−3/2 ≤ x−3/2
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By the domination rule of definite integrals:

n−3/2 ≤ x−3/2 =⇒
∫ n−1

n
n−3/2dx︸ ︷︷ ︸

n−3/2

∫ n−1

n
1dx︸ ︷︷ ︸

=[x]n
n−1=n−n+1=1

= n−3/2

≤
∫ n−1

n
x−3/2dx

Since it is not clear whether we are considering N with or without 0, let’s think why do we need
n ≥ 2 ?
−→ x > 0 =⇒ n − 1 > 0, i.e., n > 1, and since n ∈ N, then n ≥ 2.

(ii) Use part (i) to find a value U such that
∑∞

n=2 n− 3
2 ≤ U .

From (i) we have,

n−3/2 ≤
∫ n−1

n
x−3/2dx

then,

∞∑
n=2

n−3/2 ≤
∞∑

n=2

∫ n−1

n
x−3/2dx =

∫ ∞

1
x−3/2dx =

[
x− 3

2 +1

−3
2 + 1

]∞

1
=

[
−2x− 1

2
]∞

1
=

= 2 × 1− 1
2︸ ︷︷ ︸

=2

− lim
x→∞

2x− 1
2︸ ︷︷ ︸

=0

= 2

(iii) Show that
∑∞

n=1 n− 3
2 < ∞.

∞∑
n=1

n− 3
2 =

∞∑
n=2

n− 3
2

︸ ︷︷ ︸
≤2

+1 ≤ 3.
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