

AS1056 - Chapter 6, Tutorial 2. 21-11-2024. Notes.

Exercise 6.7 A sequence is implicitly defined by the recursive equation $a_{n+1} = 16 + \frac{1}{2}a_n$ and has starting point $a_0 = 8$.

(i) Write down the values of a_n for $1 \leq n \leq 4$.

$$\begin{aligned} a_1 &= 16 + \frac{1}{2}a_0 = 20 \\ a_2 &= 16 + \frac{1}{2}a_1 = 26 \\ a_3 &= 16 + \frac{1}{2}a_2 = 29 \\ a_4 &= 16 + \frac{1}{2}a_3 = 30.5 \\ &\vdots \end{aligned} \quad \left. \begin{array}{l} a_2 - a_1 = 6 \\ a_3 - a_2 = 3 \\ a_4 - a_3 = 1.5 \end{array} \right\}$$

(ii) Identify the limit L of this sequence.

First, let us show that $(a_n)_{n \in \mathbb{N}}$ is contractive and then we'll apply the theorem in the tutorial slides. That is, show there exists $k \in [0, 1)$ s.t. $|a_{n+2} - a_{n+1}| \leq k|a_{n+1} - a_n|$ for all $n \in \mathbb{N}$.

Proof.

$$\begin{aligned} |a_{n+2} - a_{n+1}| &= \left| 16 + \frac{1}{2}a_{n+1} - 16 - \frac{1}{2}a_n \right| = \left| \frac{1}{2}(a_{n+1} - a_n) \right| = \\ &= \frac{1}{2} \cancel{|a_{n+1} - a_n|} \leq k \times \cancel{|a_{n+1} - a_n|}; \quad \frac{1}{2} \leq k < 1 \end{aligned}$$

and the proof is done since we've shown that such a k exists, in particular $k \in \left[\frac{1}{2}, 1\right)$. \square

Now, note that every contractive sequence is convergent (see theorem in tutorial notes) and thus we can be sure that L exists, i.e., that the sequence has a limit. Thus, taking the limit on both sides of our recursive equation, this simplifies to:

$$\begin{aligned} \underbrace{\lim_{n \rightarrow \infty} a_{n+1}}_{=L} &= 16 + \frac{1}{2} \underbrace{\lim_{n \rightarrow \infty} a_n}_{=L} \\ L &= 16 + \frac{1}{2}L; \quad L = 32 \end{aligned}$$

Alternatively —and without using any theorem—, we could have considered the following approach. Note,

$$\begin{aligned}
a_0 &= 8 \\
a_1 &= 16 + \frac{1}{2}a_0 \\
a_2 &= 16 + \frac{1}{2}a_1 = 16 + \frac{1}{2}\left(16 + \frac{1}{2}a_0\right) = 16 + 8 + \left(\frac{1}{2}\right)^2 a_0 \\
a_3 &= 16 + \frac{1}{2}a_2 = 16 + \frac{1}{2}\left[16 + 8 + \left(\frac{1}{2}\right)^2 a_0\right] = 16 + 8 + 4 + \left(\frac{1}{2}\right)^3 a_0 = \\
&= \sum_{k=0}^2 \frac{16}{2^k} + \left(\frac{1}{2}\right)^3 a_0 = 16 \sum_{k=0}^2 \left(\frac{1}{2}\right)^k + \left(\frac{1}{2}\right)^3 a_0 \\
&\vdots \\
a_n &= 16 \sum_{k=0}^{n-1} \left(\frac{1}{2}\right)^k + \left(\frac{1}{2}\right)^n a_0
\end{aligned}$$

→ We've converted this “implicit definition of the recurrence“ that we were provided into a closed, explicit formula. This is usually referred to as *solving a recurrence relation*.

And now, given the above explicit expression (and using geometric series formula), we can easily calculate the limit:

$$\lim_{n \rightarrow \infty} a_n = \lim_{n \rightarrow \infty} 16 \sum_{k=0}^{n-1} \left(\frac{1}{2}\right)^k + \left(\frac{1}{2}\right)^n a_0 = 16 \underbrace{\sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k}_{\substack{= \frac{1}{1-\frac{1}{2}} = 2}} + \underbrace{\lim_{n \rightarrow \infty} \left(\frac{1}{2}\right)^n a_0}_{\substack{\rightarrow 0}} = 32$$

(iii) Define $b_n = a_n - L$. Write down an expression for b_n and, for $\varepsilon = 0.01$, find a value of n_0 such that $|b_n| < \varepsilon$ whenever $n \geq n_0$.

In other words, we're asked to apply the definition of limit of a sequence to prove that, indeed, the limit of (a_n) is $L = 32$.

Let us start writing,

$$b_n = a_n - \overbrace{L}^{=32}, \text{ i.e., } a_n = 32 + b_n$$

thus, the recursive equation for (b_n) is:

$$b_{n+1} = a_{n+1} - 32 = 16 + \frac{1}{2}a_n - 32 = \frac{1}{2}a_n - 16 = \frac{1}{2}(32 + b_n) - 16 = \frac{1}{2}b_n - 16 = \frac{1}{2}b_n.$$

And recursively applying this recursive equation:

$$b_{n+1} = \frac{1}{2} \underbrace{b_n}_{\substack{= \frac{1}{2} b_{n-1} \\ = \frac{1}{2} \underbrace{b_{n-2}}_{\vdots} \\ \vdots}} \quad \left. \right\} n \text{ times}$$

we get that,

$$b_n = \left(\frac{1}{2} \right)^n \underbrace{b_0}_{\substack{= a_0 - L = \\ = 8 - 32 = -24}} = -24 \times \left(\frac{1}{2} \right)^n$$

Now that we have (b_n) in explicit form, from the definition of the limit of a sequence, to prove that $L = 32$, we need to show that for any $\varepsilon > 0$ we can find some $n_0(\varepsilon) \in \mathbb{N}$ s.t. $\forall n \geq n_0(\varepsilon)$, $|a_n - L| = |b_n| < \varepsilon$ holds.

So, we require,

$$|b_n| < \varepsilon; \quad \underbrace{-24 \left(\frac{1}{2} \right)^n}_{\substack{= |24 \left(\frac{1}{2} \right)^n| \\ \uparrow}} < \varepsilon; \quad 24 \left(\frac{1}{2} \right)^n < \varepsilon; \quad \left(\frac{1}{2} \right)^n < \frac{\varepsilon}{24};$$

by symmetry property of abs. values

then,

$$\underbrace{n \ln \left(\frac{1}{2} \right)}_{= \ln(1) - \ln(2) = 0 - \ln(2)} < \ln \left(\frac{\varepsilon}{24} \right); \quad -n \ln(2) < \ln \left(\frac{\varepsilon}{24} \right); \quad n \ln(2) > -\ln \left(\frac{\varepsilon}{24} \right);$$

$$n > -\frac{1}{\ln(2)} \ln \left(\frac{\varepsilon}{24} \right) \quad \uparrow \quad \text{for } \varepsilon = 0.01$$

→ Thus, $n_0(\varepsilon = 0.01) = 12$. In other words, $|a_n - L| = |b_n| < \varepsilon = 0.01$ holds as long as $n \geq n_0(\varepsilon = 0.01) = 12$. And you can consider other values of ε , replace in $-\frac{1}{\ln(2)} \ln \left(\frac{\varepsilon}{24} \right)$, and then get $n_0(\varepsilon)$ to check that “for every natural number $n \geq n_0(\varepsilon)$, we have $|a_n - L| < \varepsilon$ ”. And this is basically the proof that $L = 32$.

Exercise 6.10

(i) Explain why if $n \in \mathbb{N}$ and $x \leq n$, with $x > 0$, then $n^{-\frac{3}{2}} \leq \int_{n-1}^n x^{-\frac{3}{2}} dx$ holds for $n \geq 2$.

So, note that:

$$x \leq n \implies x^{3/2} \leq n^{3/2}; \quad n^{-3/2} \leq x^{-3/2}$$

\uparrow
applying a monotonically increasing
function on both sides of the inequality
leaves the inequality unchanged

By the domination rule of definite integrals:

$$n^{-3/2} \leq x^{-3/2} \implies \underbrace{\int_n^{n-1} n^{-3/2} dx}_{n^{-3/2} \underbrace{\int_n^{n-1} 1 dx}_{= [x]_n^n = n-n+1=1}} \leq \int_n^{n-1} x^{-3/2} dx$$

Since it is not clear whether we are considering \mathbb{N} with or without 0, let's think why do we need $n \geq 2$?

$\rightarrow x > 0 \implies n-1 > 0$, i.e., $n > 1$, and since $n \in \mathbb{N}$, then $n \geq 2$.

(ii) Use part (i) to find a value U such that $\sum_{n=2}^{\infty} n^{-\frac{3}{2}} \leq U$.

From (i) we have,

$$n^{-3/2} \leq \int_n^{n-1} x^{-3/2} dx$$

then,

$$\begin{aligned} \sum_{n=2}^{\infty} n^{-3/2} &\leq \sum_{n=2}^{\infty} \int_n^{n-1} x^{-3/2} dx = \int_1^{\infty} x^{-3/2} dx = \left[\frac{x^{-\frac{3}{2}+1}}{-\frac{3}{2}+1} \right]_1^{\infty} = \left[-2x^{-\frac{1}{2}} \right]_1^{\infty} = \\ &= \underbrace{2 \times 1^{-\frac{1}{2}}}_{=2} - \underbrace{\lim_{x \rightarrow \infty} 2x^{-\frac{1}{2}}}_{=0} = 2 \end{aligned}$$

(iii) Show that $\sum_{n=1}^{\infty} n^{-\frac{3}{2}} < \infty$.

$$\sum_{n=1}^{\infty} n^{-\frac{3}{2}} = \underbrace{\sum_{n=2}^{\infty} n^{-\frac{3}{2}}}_{\leq 2} + 1 \leq 3.$$