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Big-O notation

* Purpose: Describe an upper bound on the time complexity of an
algorithm in terms of the worst-case scenario.

« Usage: Commonly used in computer science to analyse the efficiency of
algorithms.

+ Example: If an algorithm has a time complexity of O(n2), it means that
the number of operations performed by the algorithm grows at most
quadratically with respect to the size of the input.
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sort_List <- function(List) {
n <- length(List)
for (i in 1:(n - 1)) {
min_index <- i

for (j in (i + 1):n) {

1
2
3
4
5
6 .

7 if (List[j] < List[min_index]) min_index <- j }runs n—1 times
8

}
o runs n — 1 times
10 # Swap the ith element with the smallest found in the unsorted portion
11 if (min_index != i) {
12 temp <- List[i]
13 List[i] <- List[min_index]
14 List[min_index] <- temp
15 }
16 }
17 return(List)
18 }

n—1

-1 2
Zn—i:n—l—i—n—Q—i—...—i—l: % = %—g:O(nQ)sincethetotaInumberof
i=1

operations (iterations) grows < faster than n?.
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Let f and g be functions from R to R. We say that,

f(x) = O(g(z)) asz — oo

if there is at least one choice of a constant M > 0, for which you can find a
constant k such that:

f(2)| < Mlg(a)| ie. '@ <M

g9(z)

whenever x > k. Beyond some point k, function f(z) is at most a constant
M times g(z).

— f(x) = O(g(z)) (big-oh) if eventually (namely when = > k), f grows
slower than some multiple of g.
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We can also use this notation to describe the behaviour of a function nearby
some real number a (often a = 0).

We say that,
f(z) =0(g(z)) asz — a
if there is at least one constant M such that,

@

<M

for sufficiently small z.

The intuition behind big-oh notation is that f is O(g) if g(x) grows
as fast or faster than f(z) as z — a.
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Little-o notation

* Purpose: Describes an upper bound, but in a stronger sense than big-O,
indicating that a function grows strictly slower than the comparison
function.

+ Usage: Less common than Big O, but used when we need to express that
one function grows strictly slower than another.

- Example: If f(n) = nand g(n) = n? then f(n) = o(g(n)) asn — oo
because f(n) grows strictly slower than g(n).
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Definition (I)
Let f and g be functions from R to R. We say that,

f(z) = o(g(x)) asz — o0

if for every constant M > 0, there exists a constant k such that whenever
9 > [k

|f(z)] < Ml|g(z)| ie. lim

T—00

’ f(z)
9(x)

— f(z) = o(g(x)) (little-oh) if eventually (namely for = > k), f grows
strictly slower than any multiple of g.
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Similarly, to describe the behaviour of a function near some real number a
(often a = 0):

We say that,

if and only if:

@) _

g(z)

The intuition behind little-oh notation is that f is o(g) if g(z) grows
strictly faster than f(z) as = approaches 0.

lim
Tr—a
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2. Exercises
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For the upcoming exercise recall the following proposition from your lecture

notes:
Proposition 1
The following two statements are equivalent:

1. If f is differentiable at o with derivative f/(z¢)
2. Ash — 0, f(zo+ h) = f(xo) + hf'(x0) + o(h)

Note that using big-O notation, 2. can be expressed as

f(zo+h) = f(z0) + O(h).

11/21
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Exercise 4.8

Use O and o notation to describe the behaviour of the following functions as
x approaches the given values:

(i) fa(x)=V1+a%2asz —0

Goal: understand/describe the behaviour of fo(x) as x approximates 0.
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1. Little-o notation

1. Function Value at0: f»(0) = v1+ 02 =1
2. First Derivative at 0:

fo(x) = %(1 + 2272 x 2z fH0)=0

— fo(x) =1+ o(x)asxz — 0
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* Note that f5(0) = 0, i.e., the rate of change of fo(z) at z = 0 'is zero.
This is consistent with the statement f2(x) = 1 + o(z), which implies
that as x approaches 0, the deviation of fo(z) from 1 (= the deviation of
o(z) from 0) is smaller than the deviation of g(z) = « from 0. In other
words, in the immediate vicinity of 2 = 0, the function fa(x) changes
slower than linearly.

+ Asz — 0, whatever change happens in fa(x) from the value 1 is less
than the change in z itself. That is, o(x) goes faster to 0 than .

In summary, “fa(x) = 1 4 o(z) as & — 0" reflects that as x gets closer and
closer to 0, the function f5 (a:) gets closer and closer to 1, with its deviation,
o(z), from 1 in a vicinity of z = 0 growing slower than linearly; in other
words with its deviation, o(x), going to zero faster than .
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Note: fa(x) = 1+ o(x) as z — 0 implies that | could also express fa(x) as
fo(z) =1+ 0O(x)asz — 0...

1. fa(x)=14o(x)asx — 0

- This indicates that as  approaches 0, the difference between fo(x) and 1 is

strictly smaller than the difference between x and 0. In other words, the
function fo(x) — 1 goes to 0 faster than x does.

2. fa(x) =14+ 0(z)asz — 0
- This indicates that as x gets close to 0, the function f>(x) is close to 1, and any
deviation from 1 is at most linear in magnitude with respect to x.

As you can see, it is much more precise and informative to say

fol@) = 1+ ofa).
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Big-O notation

Binomial Theorem for Fractional Exponent

Let v = g be a rational number (p, g integers). Then:
-1 &
(1+2)*= 1+am+MCE2+... = Z “ )k
2! = k

Therefore,

1 1
folz) = V1422 =1+ -2°— §x4...

2

The first non-constant term in the expansion of fa(x) around z = 0 is
proportional to z2.

Emilio Luis Saenz Guillén Bayes Business School 16/21



Exercises

0000000800000

— fa(x) =1+ 0O(z%)asz — 0
When you're close to 0, the behaviour of fa(z) differs from the constant

function 1 by an amount that is at most proportional to z2.
Of course we can also say:

fo(x) =1+ 13:2 + O(a:4)

2
1 1
fo(x) =1+ 53:2 — §334 + 0(936)
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f2(z) = 1+ O(x?) is more informative than fa(x) = 1 + O(x)

« Since z2 grows slower than = near 0, meaning it gets closer to O faster
than x as x approximates 0. This implies that f2(z) is even closer to 1
than what is suggested by the O(x) notation. This function behaves like a
parabola near 0, which is flatter than a line when close to 0.

« Note that: O(z*) implies O(z3), which implies O(x?) which implies
O(x). Similarly, o(z*) implies o(2?), which implies o(x?) which implies

o(x).
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(i) f3(2) = 251
« f3(3+h) =0.3 —0.08h + o(h)

- fs(3) =03

- As x deviates from 3 by a small amount h, the function’s value deviates from
0.3 at a rate of 0.08 times h.

- The term o(h) represents error terms that become negligible compared to h
as h approaches 0.

© f3(34+h) =0.3+0(h)
- £(3)=03
- The O(h) notation suggests that the deviation of f3(3 + h) from 0.3 is
at most linear in h as h approaches 0.

asr — 3

However, this notation doesn't specify the exact behaviour or rate of this
deviation, i.e., it does not specify the exact coefficient in front of A.
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(lV) f4($) = W_ng—l) asxTr — %

Remember we're interested on the behaviour of f4(x) as = approaches %
Thus consider:

1
f4<;+h>: - 2 th f =
(3+n+2) (2xG+m-1)
! h—175
T 2 h+2.5

——
—oocash—0 ——3<ocoash—0
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Exercise 4.10

[Only attempt this question if you are already familiar with the expansion of
sin(z) about x = 0.]
Afunction f : R — Ris defined by

1sin(z) ifz <0,
flz)=<a ifz =0,
xsin(%) ifz > 0.

Is there a value of a which ensures that f is a continuous function at x = 0?
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