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Review Exercises

Big-O notation

• Purpose: Describe an upper bound on the time complexity of an
algorithm in terms of the worst-case scenario.

• Usage: Commonly used in computer science to analyse the efficiency of
algorithms.

• Example: If an algorithm has a time complexity of O(n2), it means that
the number of operations performed by the algorithm grows at most
quadratically with respect to the size of the input.
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Review Exercises

1 sort _ L i s t <− function ( L i s t ) {
2 n <− length ( L i s t )
3 for ( i in 1 : ( n − 1) ) {
4 min_ index <− i
5
6 for ( j in ( i + 1) : n ) {
7 i f ( L i s t [ j ] < L i s t [min_ index ] ) min_ index <− j
8 }
9
10 # Swap the i th element with the smallest found in the unsorted portion
11 i f (min_ index ! = i ) {
12 temp <− L i s t [ i ]
13 L i s t [ i ] <− L i s t [min_ index ]
14 L i s t [min_ index ] <− temp
15 }
16 }
17 return ( L i s t )
18 }


runs n − 1 times

}
runs n − i times

n−1∑
i=1

n − i = n − 1 + n − 2 + ... + 1 = n(n − 1)
2

= n2

2
− n

2
= O(n2) since the total number of

operations (iterations) grows ≤ faster than n2.
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Review Exercises

Definition (I)
Let f and g be functions fromR toR. We say that,

f(x) = O(g(x)) as x → ∞

if there is at least one choice of a constant M > 0, for which you can find a
constant k such that:

|f(x)| ≤ M |g(x)| i.e.
∣∣∣∣f(x)
g(x)

∣∣∣∣ ≤ M

whenever x > k. Beyond some point k, function f(x) is at most a constant
M times g(x).

−→ f(x) = O(g(x)) (big-oh) if eventually (namely when x > k), f grows
slower than somemultiple of g.
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Review Exercises

We can also use this notation to describe the behaviour of a function nearby
some real number a (often a = 0).

Definition (II)
We say that,

f(x) = O(g(x)) as x → a

if there is at least one constant M such that,∣∣∣∣f(x)
g(x)

∣∣∣∣ ≤ M

for sufficiently small x.

The intuition behind big-oh notation is that f is O(g) if g(x) grows
as fast or faster than f(x) as x → a.
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Review Exercises

Little-o notation

• Purpose: Describes an upper bound, but in a stronger sense than big-O,
indicating that a function grows strictly slower than the comparison
function.

• Usage: Less common than Big O, but used when we need to express that
one function grows strictly slower than another.

• Example: If f(n) = n and g(n) = n2 then f(n) = o(g(n)) as n → ∞
because f(n) grows strictly slower than g(n).
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Review Exercises

Definition (I)
Let f and g be functions fromR toR. We say that,

f(x) = o(g(x)) as x → ∞

if for every constant M > 0, there exists a constant k such that whenever
x > k:

|f(x)| < M |g(x)| i.e. lim
x→∞

∣∣∣∣f(x)
g(x)

∣∣∣∣ = 0

−→ f(x) = o(g(x)) (little-oh) if eventually (namely for x > k), f grows
strictly slower than anymultiple of g.
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Review Exercises

Similarly, to describe the behaviour of a function near some real number a
(often a = 0):

Definition (II)
We say that,

f(x) = o(g(x)) as x → a

if and only if:

lim
x→a

∣∣∣∣f(x)
g(x)

∣∣∣∣ = 0

The intuition behind little-oh notation is that f is o(g) if g(x) grows
strictly faster than f(x) as x approaches 0.
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Review Exercises

For the upcoming exercise recall the following proposition from your lecture
notes:

Proposition 1
The following two statements are equivalent:

1. If f is differentiable at x0 with derivative f ′(x0)
2. As h → 0, f(x0 + h) = f(x0) + hf ′(x0) + o(h)

Note that using big-O notation, 2. can be expressed as
f(x0 + h) = f(x0) + O(h).
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Review Exercises

Exercise 4.8

Use O and o notation to describe the behaviour of the following functions as
x approaches the given values:

(ii) f2(x) =
√

1 + x2 as x → 0

Goal: understand/describe the behaviour of f2(x) as x approximates 0.
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Review Exercises

1. Little-o notation

1. Function Value at 0: f2(0) =
√

1 + 02 = 1
2. First Derivative at 0:

f ′
2(x) = 1

2
(1 + x2)−1/2 × 2x; f ′

2(0) = 0

︸ ︷︷ ︸
−→ f2(x) = 1 + o(x) as x → 0
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Review Exercises

• Note that f ′
2(0) = 0, i.e., the rate of change of f2(x) at x = 0 is zero.

This is consistent with the statement f2(x) = 1 + o(x), which implies
that as x approaches 0, the deviation of f2(x) from 1 (= the deviation of
o(x) from 0) is smaller than the deviation of g(x) = x from 0. In other
words, in the immediate vicinity of x = 0, the function f2(x) changes
slower than linearly.

• As x → 0, whatever change happens in f2(x) from the value 1 is less
than the change in x itself. That is, o(x) goes faster to 0 than x.

In summary, “f2(x) = 1 + o(x) as x → 0 ” reflects that as x gets closer and
closer to 0, the function f2(x) gets closer and closer to 1, with its deviation,
o(x), from 1 in a vicinity of x = 0 growing slower than linearly; in other
words with its deviation, o(x), going to zero faster than x.
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Review Exercises

Note: f2(x) = 1 + o(x) as x → 0 implies that I could also express f2(x) as
f2(x) = 1 + O(x) as x → 0...
1. f2(x) = 1 + o(x) as x → 0

– This indicates that as x approaches 0, the difference between f2(x) and 1 is
strictly smaller than the difference between x and 0. In other words, the
function f2(x) − 1 goes to 0 faster than x does.

2. f2(x) = 1 + O(x) as x → 0
– This indicates that as x gets close to 0, the function f2(x) is close to 1, and any

deviation from 1 is at most linear in magnitude with respect to x.

As you can see, it is much more precise and informative to say
f2(x) = 1 + o(x).
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Review Exercises

Big-O notation

Binomial Theorem for Fractional Exponent

Let α = p
q be a rational number (p, q integers). Then:

(1 + x)α = 1 + αx + (α)(α − 1)
2!

x2 + ... =
∞∑

k=0

(
α

k

)
xk

Therefore,

f2(x) =
√

1 + x2 = 1 + 1
2

x2 − 1
8

x4...

The first non-constant term in the expansion of f2(x) around x = 0 is
proportional to x2.
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Review Exercises

−→ f2(x) = 1 + O(x2) as x → 0

When you’re close to 0, the behaviour of f2(x) differs from the constant
function 1 by an amount that is at most proportional to x2.
Of course we can also say:

f2(x) = 1 + 1
2

x2 + O(x4)

f2(x) = 1 + 1
2

x2 − 1
8

x4 + O(x6)
...
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Review Exercises

f2(x) = 1 + O(x2) is more informative than f2(x) = 1 + O(x)

• Since x2 grows slower than x near 0, meaning it gets closer to 0 faster
than x as x approximates 0. This implies that f2(x) is even closer to 1
than what is suggested by the O(x) notation. This function behaves like a
parabola near 0, which is flatter than a line when close to 0.

• Note that: O(x4) implies O(x3), which implies O(x2) which implies
O(x). Similarly, o(x4) implies o(x3), which implies o(x2) which implies
o(x).
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Review Exercises

(iii) f3(x) = x
x2+1 as x → 3

• f3(3 + h) = 0.3 − 0.08h + o(h)
– f3(3) = 0.3
– As x deviates from 3 by a small amount h, the function’s value deviates from

0.3 at a rate of 0.08 times h.
– The term o(h) represents error terms that become negligible compared to h

as h approaches 0.

• f3(3 + h) = 0.3 + O(h)
– f3(3) = 0.3
– The O(h) notation suggests that the deviation of f3(3 + h) from 0.3 is

at most linear in h as h approaches 0.
However, this notation doesn’t specify the exact behaviour or rate of this
deviation, i.e., it does not specify the exact coefficient in front of h.
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Review Exercises

(iv) f4(x) = x−8
(x+2)(2x−1) as x → 1

2

Remember we’re interested on the behaviour of f4(x) as x approaches 1
2 .

Thus consider:

f4

(1
2

+ h

)
=

1
2 + h − 8(

1
2 + h + 2

) (
2 × (1

2 + h) − 1
) =

= 1
2h︸︷︷︸

→∞ as h→0

× h − 7.5
h + 2.5︸ ︷︷ ︸

→−3<∞ as h→0
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Exercise 4.10

[Only attempt this question if you are already familiar with the expansion of
sin(x) about x = 0.]
A function f : R → R is defined by

f(x) =


1
x sin(x) if x < 0,

a if x = 0,

x sin
(

1
x

)
if x > 0.

Is there a value of a which ensures that f is a continuous function at x = 0?
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