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Exercise 2.8 Use O and o notation to describe the behaviour of the following functions as x
approaches the given values:

(ii) f2(x) =
√

1 + x2 as x → 0

1. Function Value at 0: f2(0) =
√

1 + 02 = 1
2. First Derivative at 0:

f ′
2(x) = 1

2(1 + x2)−1/2 × 2x; f ′
2(0) = 0

Then Proposition 1 in the lecture notes tells us that since:

1. f2 is differentiable at x0 = 0 with derivative f ′
2(0).

then this is equivalent to saying that

2. as h → 0, f2(0 + h) = f2(0) + hf ′
2(0) + o(h)

Hence,

f2(h) = 1 + h × 0 + o(h) = 1 + o(h) with o(h) → 0 faster than linearly.

We can corroborate our result by applying the definition.

Proof. W.t.s. that f2(x) = 1 + o(x) as x → 0, which is the same as saying f2(x) − 1 = o(x)
as x → 0.
The definition tells us that,

f2(x) − 1 = o(x) as x → 0 ⇐⇒ lim
x→0

f2(x) − 1
x

= 0

Thus, we just need to show that limx→0
f2(x)−1

x = 0:

lim
x→0

f2(x) − 1
x

= lim
x→0

√
1 + x2 − 1

x
=
↑

by l’Hôpital

= lim
x→0

1
2(1 + x2)−1/2 × 2x

1 = 0
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Now we are also asked to describe the behaviour of f2(x) using big-oh notation. An easy
solution, would be just to say f2(h) = 1 + O(h), since we know that o(h) =⇒

↑
“implies”

O(h).

Nevertheless, we can be a bit more thorough by implementing something called the Binomial
Theorem for Fractional Exponent (c.f. tutorial slides). This tells us that we can express:

f2(x) =
√

1 + x2 = 1 + 1
2x2 − 1

8x4... = 1 + O(x2) as x → 0

since, the higher order terms x4, x6... become negligible with respect to x2 in a vicinity of
x = 0, meaning O(x2) sufficiently captures the behaviour of f2(x) near zero.
Note this is more informative than saying just f2(h) = 1 + O(h). Because:

• Saying f2(h) = 1 + O(h) means the deviation of f2(h) from 1 grows at most linearly in a
vicinity of h = 0.

• Saying f2(h) = 1 + O(h2) means the deviation of f2(h) from 1 grows at most quadratically
in a vicinity of h = 0 (and remember that “quadratically“ is slower than “linearly“ for
|x| < 1/2).

In other words, O(h2) → 0 faster than O(h) → 0, meaning that f2(h) is actually closer to 1
(in the vicinity of h = 0) than what we would conclude by just saying f2(h) = 1 + O(h).
Again, we can also corroborate our result by applying the definition.

Proof.

W.t.s. f2(x) = 1 + O(x2) as x → 0, i.e., f2(x) − 1 = O(x2) as x → 0.

The definition tells us that,

f2(x) − 1 = O(x2) as x → 0 ⇐⇒
∣∣∣∣f2(x) − 1

x2

∣∣∣∣ ≤ M for sufficiently small x.

Hence, if we look at how the RHS (right hand side) absolute value looks like when x gets
arbitrarily close to 0:

lim
x→0

f2(x) − 1
x2 = lim

x→0

√
1 + x2 − 1

x2 =
↑

by l’Hôpital

lim
x→0

1
2(1 + x2)−1/2 ×��2x

��2x
= 1

2 ≤ M,

for some constant M .

(iv) f4(x) = x−8
(x+2)(2x−1) as x → 1

2 We can try to implement the same approach as before,

1. Function Value at 0: f4(0) = 0.5−8
(0.5+2)(2×0.5−1) = limx→0

−7.5
2.5×x = −∞
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however, it seems we cannot implement Proposition 1 for this case. Nevertheless, remember
we’re interested on the behaviour of f4(x) as x approaches 1

2 . Thus let us write:

f4

(1
2 + h

)
=

1
2 + h − 8(

1
2 + h + 2

) (
2 × (1

2 + h) − 1
) =

= 1
2h︸︷︷︸

→∞ as h→0

× h − 7.5
h + 2.5︸ ︷︷ ︸

→−3<∞ as h→0

so, the growth of f4(x) is dominated by the 1
2h term as h → 0 (i.e. as x → 1

2). Therefore,
we can write f4

(
1
2 + h

)
= O

(
1
h

)
= O(h−1) as h → 0. Meaning that on a vicinity of x = 1

2 ,
f4(x) grows at most as quickly as h−1 in the vicinity of h = 0 (where h−1 is a function that
tends to infinity as h → 0).
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