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Exercise 17.11
dx

dt
= 4xy − x = x(4y − 1)

dy

dt
= 1 + ln(x)

(i) Let X(t) = ln(x(t)), then

−→ x = eX

−→ dX

dt
= 1

x

dx

dt
or Ẋ = ẋ

x

thus, 
dX

dt
= 1

x

dx

dt
= 4y − 1

dy

dt
= 1 + ln(eX) = 1 + X

(1)

(2)

(ii) To obtain a second-order DE for X we differentiate equation 1 above:

d2X

dt2 = 4dy

dt
= 4(1 + X) or Ẍ − 4X = 4

(iii) • Particular Integral
Replacing η(t) = X(t) = −1 on the second-order DE of (ii), we see that this is is satisfied:

d2X

dt
= d2(−1)

dt
= 0 = 4(1 + (−1)) = 0

• Complementary function (CF)
To find the CF, we first solve the auxiliary equation:

λ2 − 4 = 0; λ2 = 4; λ = ±2

And therefore, the CF is:

X0(t) = Ae2t + Be−2t

Finally, the general solution to the ODE is:
X(t) = η(t) + X0(t) = −1 + Ae2t + Be−2t

y(t) = 1 + Ẋ

4 = 1
4 + 1

4
(
2Ae2t − 2Be−2t

)
= 1

4 + 1
2Ae2t − 1

2Be−2t

1



(iv) Applying the boundary conditions:

• x(0) = 1 =⇒ X(0) = ln((x(0)) = ln(1) = 0
and X(0) = −1 + A + B = 0; A + B = 1

• y(0) = 1
4 + 1

2A − 1
2B = 1; 1

2(A − B) = 3
4; A − B = 3

2

︸ ︷︷ ︸
2A = 5

2; A = 5
4 and B = −1

4

Putting all together:
X(t) = −1 + 5

4e2t − 1
4e−2t

y(t) = 1
4 + 5

8e2t + 1
8e−2t

=⇒


x(t) = exp

(
−1 + 5

4e2t − 1
4e−2t

)

y(t) = 1
4 + 5

8e2t + 1
8e−2t
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Exercise 17.13

dx

dt
= −v; dv

dt
= g − cv2

• Solve dv
dt = g − cv2 using partial fractions.

Note this is a first-order separable ODE, thus what we need to do is to separate the t’s and the
v’s and then integrate on both sides. First, let us rewrite it as:

dv

dt
=

[
g

c
− v2

]
︸ ︷︷ ︸

=(
√

g
c

+v)(
√

g
c

−v)

× c

For notational convenience let γ =
√

g
c , then,

dv

dt
= (γ + v)(γ − v)c ; dv

(γ + v)(γ − v) = cdt

Since integrating the LHS would be a bit difficult, let us re-express 1
(γ+v)(γ−v) using partial

fractions:

1
(γ + v)(γ − v) = A

γ + v
+ B

γ − v
= A(γ − v) + B(γ + v)

(γ + v)(γ − v)

Thus,

1 = A(γ − v) + B(γ + v) = γ(A + B) + v(B − A)
−→ B − A = 0; B = A

−→ γ(A + B) = 1; γ (A + A)︸ ︷︷ ︸
2A

= 1; A = 1
2γ

= B

And now we can write

dv

(γ + v)(γ − v) =
(

A

γ + v
+ B

γ − v

)
dv = 1

2γ

( 1
γ + v

+ 1
γ − v

)
dv = cdt

that is,( 1
γ + v

+ 1
γ − v

)
dv = 2γcdt

Now, integrating on both sides we get:

ln(γ + v) − ln(γ − v)︸ ︷︷ ︸
ln

(
γ+v
γ−v

) = 2γct + A; γ + v

γ − v
= e2γct+A

γ + v = γe2γct+A − ve2γct+A; v
(
e2γct+A + 1

)
= γ

(
e2γct+A − 1

)
−→ v = γ

(
e2γct+A − 1

)
(e2γct+A + 1)
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Finally, applying the boundary condition v(0) = 0:

v(0) = γ
eA − 1
eA + 1 = 0; eA = 1; A = ln(1) = 0

Therefore,

−→ v(t) = γ
e2γct − 1
e2γct + 1 =

↑
× e−2γct

e−2γct

γ
1 − e−2γct

1 + e−2γct

(ii)

lim
t→∞

v(t) = lim
t→∞

γ
1 − e−2γct

1 + e−2γct
= γ

where limt→∞ e−2γct = 0.

(iii) Of course that, given what we just got for v(t), we can derive x(t) by integrating on both sides
of dx = −vdt. However, that’s a bit cumbersome integral. Instead, we are asked to show that
“the expression we are provided is indeed x(t)”. For such purposes, we need to check that it
fulfils, on the one hand, the boundary condition and, on the other hand, the ODE itself. Note
there’s a typo on the statement of the exercise, and that it should say instead:

x(t) = 104 + ln(2)
c

− 1
c

ln(e
√

gct + e−√
gct) = 104 + ln(2)

c
− 1

c
ln(eγct + e−γct)

since γc = √
gc × c = √

g × c �c
��
√

c

√
c

��
√

c
= √

gc The boundary condition is implicitly given by “An
object is taken up to a height 10 km”, i.e., x(0) = 10 km = 10, 000 m.

• x(0) = 104 + ln(2)
c

− 1
c

ln(2) = 104 ✓

• dx

dt
= −1

c

γceγct − γce−γct

eγct − e−γct
=
↑

× e−γct

e−γct

−γ
1 − e−2γct

1 + e−2γct
= −v(t) ✓

(iv) g = 10ms−2 and c = 0.001m−1; thus, γc = √
gc =

√
0.01 = 0.1

Then,

x(t) = 104 + ln(2)
0.001 − 1

0.001 ln
(
e0.1t + e−0.1t

)
= 104 + 1, 000 ln(2) − 1, 000 ln

(
e0.1t + e−0.1t

)
The moment at which the object hits the ground is the values of t for which x(t) = 0. So, let’s
try to solve for t:

104 + 1, 000 ln(2) − 1, 000 ln
(
e0.1t + e−0.1t

)
= 0

ln
(
e0.1t + e−0.1t

)
= 10 + ln(2)

e0.1t + e−0.1t − e10+ln(2) = 0
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However, this equation hasn’t got a closed form solution. Instead, it needs to be solved numeri-
cally. For such purposes there’s a very famous method due to Newton-Raphson.
This tells us that if f satisfies certain assumptions and the initial guess is close to the solution,
then,

x1 = x0 − f(x0)
f ′(x0)

is a better approximation of the root than x0. So, we start with some initial guess x0 and get
some x1. Following this logic, we then repeat the process as:

xn+1 = xn − f(xn)
f ′(xn)

until a sufficiently precise value is reached. In our case we have,

f(t) = e0.1t + e−0.1t − e10+ln(2)

f ′(t) = 0.1e0.1t − 0.1e−0.1t

Then, using the calculator we can do the following. Let’s take as initial guess t0 = 100:

t1 = t0 − f(t0)
f ′(t0) = 100 − e0.1×100 + e−0.1×100 − e10+ln(2)

0.1e0.1×100 − 0.1e−0.1×100 = 110

t2 = t1 − f(t1)
f ′(t1) = 110 − e0.1×110 + e−0.1×110 − e10+ln(2)

0.1e0.1×110 − 0.1e−0.1×110 = 107.3575888 . . .

t3 =
... =

... = 106.940423 . . .

t4 =
... =

... = 106.9314758 . . .

t5 =
... =

... = 106.9314718 . . .

t6 =
... =

... = 106.9314718 . . .
... =

... =
... =

...

You’ll see that from t5 onwards you’ll always get 106.9314718 if you continue iterating. That
is, Newton-Raphson has converged to a solution t = 106.9314718, and you can check that
x(106.9314718) = 0.
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