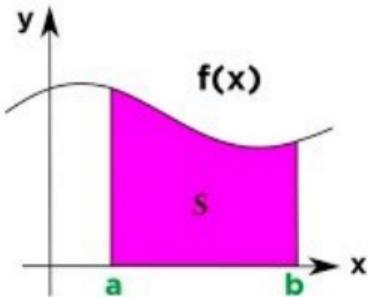


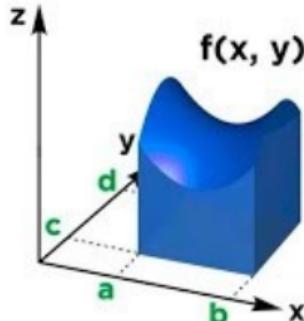
# AS1056 - Mathematics for Actuarial Science. Chapter 15, Tutorial 1.

Emilio Luis Sáenz Guillén


Faculty of Actuarial Science  
and Insurance,  
Bayes Business School.

19/03/2025




## Refreshing some concepts:

### Understanding Double Integrals



integrals give the  
area under a curve

$$\int_a^b f(x)dx$$



double integrals give the  
volume under a surface

$$\int_c^d \int_a^b f(x, y)dx dy$$

## Trigonometric identities

- $\sin(2\theta) = 2 \sin(\theta) \cos(\theta)$  (double angle formulas for sine and cosine)
- $\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2 \cos^2(\theta) - 1 = 1 - 2 \sin^2(\theta)$  (double angle formulas for sine and cosine)
- $\cos^2(\theta) + \sin^2(\theta) = 1$  (Pythagorean formula for sines and cosines)

## Polar representation (see 13.5.2)

Any point  $(x, y)$  in two-dimensional space can be written in the form  $(r \cos(\theta), r \sin(\theta))$ , where  $r = \sqrt{x^2 + y^2}$  and  $\tan(\theta) = y/x$ .

## Jacobian

$$dxdy = r dr d\theta$$

## Exercise 15.5

Use a transformation to polar coordinates to calculate the integral of

$$f(x, y) = \frac{(x-y)^2}{\sqrt{x^2+y^2}}$$
 over the unit disc,  $\{(x, y) : x^2 + y^2 < 1\}$ .

## Exercise 15.9

Let  $A$  denote the area of the plane defined by  $\frac{1}{K} < x < K$ ,  $\frac{1}{K} < y < K$ ,  $xy < 1$ , where  $K > 1$  is a constant.

- (i) Sketch the area  $A$ .
- (ii) Calculate  $\iint_A (xy)^c dx dy$ , where  $c \neq -1$  is a constant.
- (iii) Is there any value of  $c$  for which this integral converges to a limit as  $K \rightarrow \infty$ ?

**Bayes Business School**

106 Bunhill Row

London EC1Y 8TZ

Tel +44 (0)20 7040 8600

[bayes.city.ac.uk](http://bayes.city.ac.uk)