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Exercise 15.5

(z —y)?

over A= {(z,y): 2> +y*> <1
T {(z,9) y* <1}

flz,y) =

We convert to polar coordinates by setting:
x=rcos(f), y=rsin(d), dxdy=rdrdd
Let us simplify first the numerator,

(x — y)2 = (rcos(f) — rsin(@))2 = r2(cos(0) — sin(@))2 = rz(cosz(G) — 2cos(#)sin(0) + Sin2(0)) =
=73 cos’() +sin?(0) — 2 cos(0) sin(0) ) = r2(1 — sin(26))
—_—————

=1 (by Pythagorean identity) =sin(26) (by double angle identity)

therefore,
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1 [9 + 1005(29)} = l[27T + 1cos(47r) —0— 1cos(2 x 0)] = 27r.
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Exercise 15.9

1 1
A={(my): Lz <e<K 2 <y<K my<l K>1}

(i) First notice that the inequalities

1 1
= K, —= K, K>1
K<x< ) K<y< ) >

describe a square in the first quadrant with vertices: (%, %), (%, K), (K,K), (K, %)

Second, the condition xy < 1 can be rewritten as y < %, meaning that A denotes the region
below the hyperbola y = %

Now, note that taking the limiting values of x and replacing in this hyperbola we get:

—ifxz%thenyzK
—ifmthhenyz%

that is, the hyperbola passes by the second and third vertices of the square.

1 1
A= {(x,y):R<x,x<K,R<y,y<K,xy<1,K>1};K=3
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(ii) [[4(zy)°dxdy where ¢ # 1

— Integral limits

1 1
—<z< Kandzy <l,ie,z < —
K y

the lower bound of the inner integral is clear. For the upper bound we should choose the
smaller between K and %, and we know that % <y, i.e., % < K.



— Inner integral
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— Outer integral
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The only way this can converge to a limit is if ¢ = K:
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