

AS1056 - Mathematics for Actuarial Science. Chapter 0, Tutorial 1.

Emilio Luis Sáenz Guillén

Faculty of Actuarial Science
and Insurance,
Bayes Business School.

08/10/2024

1. Introduction

2. Exercises

2.1 Set Theory

2.2 Algebraic Expressions

2.3 Permutations and Combinations

Administrative Details

About myself:

- Welcome everyone! My name is Emilio Luis Sáenz Guillén, I'll be one of your Teaching Assistants for AS1056 - Mathematics for Actuarial Science.
- Doctoral Researcher in Actuarial Science at Bayes Business School.
- Email: emilio.saenz-guillen@bayes.city.ac.uk.
Personal website: <https://emilioluissaenzguillen.github.io/>.

Administrative Details

About myself:

- Welcome everyone! My name is Emilio Luis Sáenz Guillén, I'll be one of your Teaching Assistants for AS1056 - Mathematics for Actuarial Science.
- Doctoral Researcher in Actuarial Science at Bayes Business School.
- Email: emilio.saenz-guillen@bayes.city.ac.uk.
Personal website: <https://emilioluissaenzguillen.github.io/>.

Tutorials' details:

- Cover around **2-3** questions every week.
- Requirement: be *minimally* familiar with the corresponding week's topics and, if possible, also with the respective exercises.
- Solutions and tutorial notes will be uploaded to Moodle.

1. Introduction

2. Exercises

- 2.1 Set Theory
- 2.2 Algebraic Expressions
- 2.3 Permutations and Combinations

1. Introduction

2. Exercises

2.1 Set Theory

2.2 Algebraic Expressions

2.3 Permutations and Combinations

A. Set Theory

- **Symmetric difference:**

$$A \Delta B = (A \setminus B) \cup (B \setminus A) = (A \cap B^c) \cup (B \cap A^c)$$

- **De Morgan's laws:**

$$(A \cup B)^c = A^c \cap B^c \quad \text{and} \quad (A \cap B)^c = A^c \cup B^c$$

- **Intersection is:**

- *Commutative:* $A \cap B = B \cap A$
- *Associative:* $(A \cap B) \cap C = A \cap (B \cap C)$
- *Distributive over union:* $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- **Union is:**

- *Commutative:* $A \cup B = B \cup A$
- *Associative:* $(A \cup B) \cup C = A \cup (B \cup C)$
- *Distributive over intersection:* $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Exercise A.6

A, B and C are three sets. Sets E and F are defined by

$$E = (A \cap B) \Delta C, \quad F = A \cap (B \Delta C).$$

Show that $F \subset E$. Find an expression for $E \setminus F$ in terms of A, B and C .

1. Introduction

2. Exercises

2.1 Set Theory

2.2 Algebraic Expressions

2.3 Permutations and Combinations

B.4. Rational functions

- A function $f(x)$ is called a **rational function** if it has the form:

$$f(x) = \frac{p(x)}{q(x)}$$

for $p(x)$ and $q(x)$ being polynomial functions.

- $p(x)/q(x)$ is a proper rational function if the degree of p is less than the degree of q .

- We can always reduce a rational function to a polynomial (quotient) plus a proper rational function (remainder). That is, take the improper rational function $p(x)/q(x)$, then we can re-express it as:

$$\frac{p(x)}{q(x)} = \underbrace{s(x)}_{\text{quotient}} + \frac{\overbrace{r(x)}^{\text{remainder}}}{q(x)}$$

where $\frac{r(x)}{q(x)}$ is now a proper rational function.

Partial Fractions Decomposition

We can express a *proper rational function*, $p(x)/q(x)$, as a sum of simpler fractions.

Form of the rational function	Form of the partial fraction
$\frac{px+q}{(x-a)(x-b)}$, $a \neq b$	$\frac{A}{x-a} + \frac{B}{x-b}$
$\frac{px+q}{(x-a)^2}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2}$
$\frac{px^2+qx+r}{(x-a)(x-b)(x-c)}$	$\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$
$\frac{px^2+qx+r}{(x-a)^2(x-b)}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$
$\frac{px^2+qx+r}{(x-a)(x^2+bx+c)}$	$\frac{A}{x-a} + \frac{Bx+C}{x^2+bx+c}$
*where $x^2 + bx + c$ cannot be factorised further	

Table 1: Partial fraction decomposition of various rational functions

Exercise B.4 Write the function

$$f(x) = \frac{4x^4}{(2x - 1)^2(x + 1)}$$

as a linear term in x plus a remainder expressed in partial fractions.

1. Introduction

2. Exercises

2.1 Set Theory

2.2 Algebraic Expressions

2.3 Permutations and Combinations

D.2. Combinations

$$^nC_r = \binom{n}{r} = \frac{^nP_r}{^rP_r} = \frac{n!}{r!(n-r)!}$$

- * Number of possible arrangements in a collection of items where the order does not matter.

D.2.1. Pascal's triangle

Exercise D.2 The smallest integer which makes 3 appearances in Pascal's triangle is 6.

- (i) Show that 6 makes exactly 3 appearances, i.e., that it cannot occur again lower down in the triangle.
- (ii) Which is the smallest integer to make 4 appearances?

Bayes Business School

106 Bunhill Row

London EC1Y 8TZ

Tel +44 (0)20 7040 8600

bayes.city.ac.uk