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Exercise A.6. A, B and C are three sets. Sets E and F are defined by

E = (A ∩ B)∆C, F = A ∩ (B∆C).

(i) Show that F ⊂ E. First, let us work out E and F independently:

· E = (A ∩ B)∆C

symmetric difference
↓
= ((A ∩ B)\C)︸ ︷︷ ︸

(A∩B)∩Cc

∪ (C\(A ∩ B))︸ ︷︷ ︸
C∩(A∩B)c

associativity of ∩
↓
= A ∩ B ∩ Cc ∪ (A ∩ B)c︸ ︷︷ ︸

=(Ac∪Bc)
(by de Morgan’s)

∩C =

= A ∩ B ∩ Cc ∪ (Ac ∪ Bc) ∩ C

distributivity of ∩
↓
= A ∩ B ∩ Cc︸ ︷︷ ︸

:=X

∪ Ac ∩ C︸ ︷︷ ︸
:=Y

∪ Bc ∩ C︸ ︷︷ ︸
:=Z

= X ∪ Y ∪ Z

· F = A ∩ (B∆C)

symmetric difference
↓
= A ∩ ((B\C) ∪ (C\B)) = A ∩ ((B ∩ Cc) ∪ (C ∩ Bc)) =

↑
distributivity/commutativity of ∩

= A ∩ B ∩ Cc︸ ︷︷ ︸
:=X

∪ A ∩ Bc ∩ C︸ ︷︷ ︸
:=W

= X ∪ W

Proof. Want to show (w.t.s.) that F ⊂ E, in other words, w.t.s. that, for any x, if x ∈ F =⇒
x ∈ E. There are two possible cases:

1. x ∈ F and x ∈ X.
2. x ∈ F and x ∈ W .

And looking at them separately, we can conclude as follows:

1. x ∈ F and x ∈ X =⇒ x ∈ E, since X ⊂ E.
2. x ∈ F and x ∈ W = A ∩ Bc ∩ C; clearly, W = A ∩ Bc ∩ C ⊂ Z = Bc ∩ C

=⇒ x ∈ Z =⇒ x ∈ E.

(ii) Find an expression for E\F in terms of A, B and C.

E\F = (((((((
A ∩ B ∩ Cc ∪ (Ac ∪ Bc) ∩ C)\(((((((

A ∩ B ∩ Cc ∪ A ∩ Bc ∩ C)) =

= (Ac ∪ Bc) ∩ C ∩ (A ∩ Bc ∩ C)c︸ ︷︷ ︸
Ac∪(Bc∩C)c=Ac∪(B∪Cc)

(by de Morgan’s)

= (Ac ∪ Bc) ∩ C ∩ (Ac ∪ B ∪ Cc)︸ ︷︷ ︸
=C∩(Ac∪B) (note that C∩Cc=∅)

commutativity of ∩
↓
=

= (Ac ∪ Bc) ∩ (Ac ∪ B) ∩ C = Ac ∩ C = C\A.
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Exercise B.4. Write the function

f(x) = 4x4

(2x − 1)2(x + 1)
as a linear term in x plus a remainder expressed in partial fractions.

f(x) is a rational function, since it is a fraction of two polynomials:

f(x) = 4x4

(2x − 1)2(x + 1) = p(x)
q(x)

and let us denote m := degree(p(x)) = 4 and n := degree(q(x)) = 3.

1. We can reduce a rational function to a polynomial (quotient of the division of p(x)/q(x)) plus
a proper rational function (remainder of the division of p(x)/q(x)). The polynomial/quotient
will be of degree m − n if m ≥ n and of degree 0 if m < n.
Let us find this polynomial/quotient by first operating on the denominator q(x):

q(x) = (2x − 1)2(x + 1) = (4x2 − 4x + 1)(x + 1) = 4x3 +��4x2 −��4x2 − 4x + x + 1 =
= 4x3 − 3x + 1

We know that the first term of the quotient of p(x)/q(x) is just the higher degree term of the
numerator divided by the higher degree term of the denominator: 4x4/4x3 = x. Thus, we’ve
already found the “linear term in x” that is hinted by the question statement. Now we need
to find the remainder. Keep in mind:

p(x)
q(x) = s(x)︸︷︷︸

quotient

+

remainder︷︸︸︷
r(x)
q(x)

we know that s(x) = x and based on this we can work out the remainder using the following
trick:

f(x) = x − x + 4x4

(2x − 1)2(x + 1) =

= x + 1
(2x − 1)2(x + 1)

{
4x4 − x(2x − 1)2(x + 1)︸ ︷︷ ︸

x(x+1)(4x2−4x+1)=
=(x2+x)(4x2−4x+1)=

=4x4−��4x3+x2+��4x3−4x2+x=
=4x4−3x2+x

}

= x + 1
(2x − 1)2(x + 1)

{
��4x4 −��4x4 + 3x2 − x

}
= x + 3x2 − x

(2x − 1)2(x + 1)︸ ︷︷ ︸
proper rational function

since degree num. < degree denom.

Note that above we have used the hint that the statement of the exercise implicitly gives us
by saying that we need to write f(x) as “linear term in x” plus something else. This meaning
that we knew in advance that s(x) was going to be just some coefficient times x, which
we find by just dividing 4x4/4x3 . Without knowing this, we still know that any rational
function can be expressed as a polynomial plus a proper rational function. In such case, to
find this polynomial we can implement something called polynomial long division. The steps
of polynomial long division are:
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(i) Divide the highest-order term of the numerator by the highest-order term of the denom-
inator, and put that in the answer.

(ii) Multiply the denominator by that answer, put that below the numerator. Subtract to
create a new polynomial.

(iii) Repeat the process taking now the latter polynomial as the numerator.
(iv) Stop when the remainder is of a lower degree than the denominator or when it becomes

zero.

x

4x3 − 3x + 1
)

4x4

−(4x4 − 3x2 + x)+0
0 + 3x2 − x

and you see, that in this way we can also straightforwardly find the quotient s(x) and the
remainder r(x).

2. We can express a proper rational function as a sum of simpler fractions through a process
called partial fraction decomposition.
Recalling that for repeated roots we should include all its powers, the partial fractions form
of the above proper rational functions is:

3x2 − x

(2x − 1)2(x + 1) = A

(x + 1) + B

(2x − 1) + C

(2x − 1)2

3x2 − x = A (2x − 1)2︸ ︷︷ ︸
=4x2−4x+1

+B (2x − 1)(x + 1)︸ ︷︷ ︸
2x2+2x−x−1=

=2x2+x−1

+C(x + 1)

= A(4x2 − 4x + 1) + B(2x2 + x − 1) + C(x + 1) =
= (4A + 2B)x2 + (−4A + B + C)x + (A − B + C)

We get then the following system of equations:
3 = 4A + 2B (1)

−1 = −4A + B + C

0 = A − B + C (3)

}
− 1 = −5A + 2B (2)

Then, subtracting (1) − (2):

4 = 9A; A = 4/9

Replacing A = 4/9 into (2):

−1 = −5 × 4
9 + 2B; 2B = −1 + 20

9 = 11
9 ; B = 11

18
Finally, we derive C by replacing A and B on (3):

C = B − A = 11
18 − 4

9 = 11
18 − 8

18 = 3
18 = 1

9
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Thus, to conclude, f(x) can be rewritten as:

f(x) = x + 4/9
(x + 1) + 11/18

(2x − 1) + 1/6
(2x − 1)2 = x + 1

18

[ 8
x + 1 + + 11

(2x − 1) + 3
(2x − 1)2

]

Exercise D.2 (i) The smallest integer which makes 3 appearances in Pascal’s triangle is 6.
Show that 6 makes exactly 3 appearances, i.e., that it cannot occur again lower down in the triangle.

We can find out (by hand, let’s say) which are the 3 appearances of 6 in Pascal’s triangle: .

6
C1 =

(
6
1

)
= 6; 4

C2 =
(

4
2

)
= 4!

2!2! = 6;

6
C5 =

(
6
5

)
= 6 (note that n

C1 = n
Cn−1 = n)

Now, what might be more challenging is to show that 6 will not appear again in Pascal’s triangle.
We can cover the entire Pascal’s triangle through sets of the form{

n
Cr =

(n
r

)
: n = r, r + 1, r + 2, ...

}
, with r ∈ N∗ (i.e., r being a natural number larger than zero:

1, 2, 3, ...). Note that a specific integer can appear at most once in each of the latter sets. This
is because the number in the position n

Cr (for any r and any n) is derived from the sum of two
numbers above it in the triangle, that is: n

Cr = n−1
Cr−1 + n−1

Cr. And hence these n
Cr’s grow as

you move down the triangle, implying that ...
n−1

Cr <
n
Cr <

n+1
Cr....

• Consider the set
{

n
C1 : n = 1, 2, 3, ...

}
, can we find an n such that n

C1 = 6? Yes, as we have
already mentioned, this is 6 since 6

C1 =
(6

1
)

= 6.

• Consider the set
{

n
C2 : n = 2, 3, 4, ...

}
, can we find an n such that n

C2 = 6? Yes, as we have
already mentioned, is 4 since 4

C2 =
(4

2
)

= 6.

• Consider the set
{

n
C3 : n = 3, 4, 5, ...

}
, can we find an n such that n

C3 = 6? No since:
(3

3
)

= 1,(4
3
)

= 4,
(5

3
)

= 10,... and any other
(k

3
)

for k > 5 will be > 10 as ...
n−1

Cr <
n
Cr <

n+1
Cr...

• Consider the set
{

n
C4 : n = 4, 5, 6, ...

}
, can we find an n such that n

C4 = 6? No since:
(4

4
)

= 1,(5
4
)

= 5,
(6

4
)

= 15,... and any other
(k

4
)

for k > 6 will be > 15 as ...
n−1

Cr <
n
Cr <

n+1
Cr...

• Consider the set
{

n
C5 : n = 5, 6, 7, ...

}
, can we find an n such that n

C5 = 6? Yes, as we have
already mentioned, this is 6 since

(6
5
)

= 6.

• Consider the set
{

n
C6 : n = 6, 7, 8, ...

}
, can we find an n such that n

C6 = 6? No since:
(6

6
)

= 1,(7
6
)

= 7,
(8

6
)

= 28,... and any other
(k

6
)

for k > 8 will be > 28 as ...
n−1

Cr <
n
Cr <

n+1
Cr...

And I hope that you can see that all the remaining sets n
Cr for r > 6 will be formed by 1 and

other values that are all larger than 6.
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