

AS1056 - Mathematics for Actuarial Science. Chapter 6, Tutorial 2.

Emilio Luis Sáenz Guillén

Bayes Business School. City, University of London.

November 24, 2023

Refreshing some concepts¹

- A function $f(x)$ is called a rational function if it has the form:

$$f(x) = \frac{p(x)}{q(x)}$$

for $p(x)$ and $q(x)$ being polynomial functions.

- $p(x)/q(x)$ is a proper rational function if the degree of p is less than the degree of q .

¹ Check 'Preliminary Materials', pp. 15-16.

- We can always reduce a rational function to a polynomial (quotient) plus a proper rational function (remainder). That is take the improper rational function $p(x)/q(x)$, then we can re-express it as:

$$\frac{p(x)}{q(x)} = \underbrace{\frac{s(x)}{q(x)}}_{=\text{quotient}} + \overbrace{\frac{r(x)}{q(x)}}^{\text{remainder}}$$

where $\frac{r(x)}{q(x)}$ is now a proper rational function.

Partial Fractions Decomposition

We can express a proper rational function $p(x)/q(x)$ as a sum of simpler fractions.

S.No.	Form of the rational function	Form of the partial fraction
1.	$\frac{px+q}{(x-a)(x-b)}$, $a \neq b$	$\frac{A}{x-a} + \frac{B}{x-b}$
2.	$\frac{px+q}{(x-a)^2}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2}$
3.	$\frac{px^2+qx+r}{(x-a)(x-b)(x-c)}$	$\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$
4.	$\frac{px^2+qx+r}{(x-a)^2(x-b)}$	$\frac{A}{x-a} + \frac{B}{(x-a)^2} + \frac{C}{x-b}$
5.	$\frac{px^2+qx+r}{(x-a)(x^2+bx+c)}$	$\frac{A}{x-a} + \frac{Bx+C}{x^2+bx+c}$
	• where $x^2 + bx + c$ cannot be factorised further	

✓ **Integration by partial fractions** is one popular method to integrate complex functions:

Step 1. Check whether the given integrand is a proper or improper rational function.

²Check exercise C.4 from the 'Preliminary Materials' for an example.

✓ **Integration by partial fractions** is one popular method to integrate complex functions:

Step 1. Check whether the given integrand is a proper or improper rational function.

Step 2. If the given function is an improper rational function perform 'polynomial long division'². This will divide the function into a polynomial plus a proper rational function.

²Check exercise C.4 from the 'Preliminary Materials' for an example.

✓ **Integration by partial fractions** is one popular method to integrate complex functions:

- Step 1.** Check whether the given integrand is a proper or improper rational function.
- Step 2.** If the given function is an improper rational function perform 'polynomial long division'². This will divide the function into a polynomial plus a proper rational function.
- Step 3.** Decompose the proper function into simpler fractions.

²Check exercise C.4 from the 'Preliminary Materials' for an example.

✓ **Integration by partial fractions** is one popular method to integrate complex functions:

Step 1. Check whether the given integrand is a proper or improper rational function.

Step 2. If the given function is an improper rational function perform 'polynomial long division'². This will divide the function into a polynomial plus a proper rational function.

Step 3. Decompose the proper function into simpler fractions.

Step 4. After decomposition, integrate each fraction separately.

²Check exercise C.4 from the 'Preliminary Materials' for an example.

Exercise 6.8

Express $f(x) = \frac{(2-x)^2}{(2+x)^2(1+x)}$ in partial fractions. Hence find the definite integral of f from 3 to 4.

Integration of inverse functions

If we are looking for $\int_a^b f^{-1}(x)dx$, where f is continuous one-to-one function, we can make the substitution $x = f(y)$, implying that $dx = f'(y)dy$ and $y = f^{-1}(x)$. Then,

- The lower limit becomes $y = f^{-1}(a)$
- The upper limit becomes $y = f^{-1}(b)$

So, using integration by parts, we have,

Integration of inverse functions

If we are looking for $\int_a^b f^{-1}(x)dx$, where f is continuous one-to-one function, we can make the substitution $x = f(y)$, implying that $dx = f'(y)dy$ and $y = f^{-1}(x)$. Then,

- The lower limit becomes $y = f^{-1}(a)$
- The upper limit becomes $y = f^{-1}(b)$

So, using integration by parts, we have,

$$\begin{aligned}\int_a^b f^{-1}(x)dx &= \int_{f^{-1}(a)}^{f^{-1}(b)} yf'(y)dy = [yf(y)]_{f^{-1}(a)}^{f^{-1}(b)} - \int_{f^{-1}(a)}^{f^{-1}(b)} f(y)dy = \\ &= bf^{-1}(b) - af^{-1}(a) - \int_{f^{-1}(a)}^{f^{-1}(b)} f(y)dy\end{aligned}$$

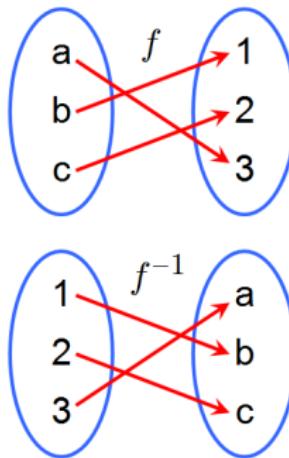
Note that:

- ' f continuous' is a necessary and sufficient condition for Riemann integrability.
- ' f one-to-one' (= bijective) is a necessary and sufficient condition for the existence of the inverse function f^{-1}

Note that:

- ' f continuous' is a necessary and sufficient condition for Riemann integrability.
- ' f one-to-one' (= bijective) is a necessary and sufficient condition for the existence of the inverse function f^{-1}

→ If f is a strictly monotone (i.e. strictly increasing/decreasing) continuous function then it has an inverse function f^{-1} which is also continuous (and is also strictly monotone; think why it makes all the sense it is like that!)



Exercise 6.6

$$= [0, +\infty)$$

The decreasing function $f(x) : \overbrace{\mathbb{R}^+ \cup \{0\}}^{= [0, +\infty)} \rightarrow (0, 1]$ is defined by

$$f(x) = \frac{1}{1 + \sqrt{x}}$$

We are looking for $\int_{0.25}^{0.5} f^{-1}(y) dy$.

- (i) Calculate the inverse function $f^{-1}(y)$.
- (ii) Integrate this function from 0.25 to 0.5.
- (iii) Does this agree with the result you get from using the formula?