
AS1056 - Mathematics for Actuarial

Science. Chapter 6, Tutorial 2.

Emilio Luis Sáenz Guillén

Bayes Business School. City, University of London.

November 24, 2023



Refreshing some concepts1

• A function f(x) is called a rational function if it has the form:

f(x) = p(x)
q(x)

for p(x) and q(x) being polynomial functions.

• p(x)/q(x) is a proper rational function if the degree of p is less than the
degree of q.

1Check ‘Preliminary Materials’, pp. 15-16.
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• We can always reduce a rational function to a polynomial (quotient) plus a
proper rational function (remainder). That is take the improper rational
function p(x)/q(x), then we can re-express it as:

p(x)
q(x)

= s(x)︸︷︷︸
=quotient

+

remainder︷︸︸︷
r(x)
q(x)

where r(x)
q(x) is now a proper rational function.
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Partial Fractions Decomposition

We can express a proper rational function p(x)/q(x) as a sum of simpler
fractions.
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4 Integration by partial fractions is one popular method to integrate
complex functions:

Step 1. Check whether the given integrand is a proper or improper rational
function.

Step 2. If the given function is an improper rational function perform
‘polynomial long division’2. This will divide the function into a polynomial
plus a proper rational function.

Step 3. Decompose the proper function into simpler fractions.

Step 4. After decomposition, integrate each fraction separately.

2Check exercise C.4 from the ‘Preliminary Materials’ for an example.
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Exercise 6.8

Express f(x) = (2−x)2

(2+x)2(1+x) in partial fractions. Hence find the definite
integral of f from 3 to 4.
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Integration of inverse functions

If we are looking for
∫ b

a f−1(x)dx, where f is continuous one-to-one
function, we can make the substitution x = f(y), implying that
dx = f ′(y)dy and y = f−1(x) Then,
• The lower limit becomes y = f−1(a)
• The upper limit becomes y = f−1(b)
So, using integration by parts, we have,

∫ b

a

f−1(x)dx =
∫ f−1(b)

f−1(a)
yf ′(y)dy = [yf(y)]f

−1(b)
f−1(a) −

∫ f−1(b)

f−1(a)
f(y)dy =

= bf−1(b) − af−1(a) −
∫ f−1(b)

f−1(a)
f(y)dy
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Note that:
• ‘f continuous’ is a necessary and sufficient condition for Riemann
integrability.

• ‘f one-to-one’ (= bijective) is a necessary and sufficient condition for the
existence of the inverse function f−1

−→ If f is a strictly monotone (i.e. strictly increasing/decreasing) continuous
function then it has an inverse function f−1 which is also continuous (and is
also strictly monotone; think why it makes all the sense it is like that!)
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Exercise 6.6

The decreasing function f(x) :

=[0,+∞)︷ ︸︸ ︷
R+ ∪ {0} → (0, 1] is defined by

f(x) = 1
1 +

√
x

We are looking for
∫ 0.5

0.25 f−1(y)dy.

(i) Calculate the inverse function f−1(y).
(ii) Integrate this function from 0.25 to 0.5.

(iii) Does this agree with the result you get from using the formula?
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