

AS1056 - Mathematics for Actuarial Science. Chapter 3, Tutorial 2.

Emilio Luis Sáenz Guillén

Bayes Business School. City, University of London.

November 3, 2023

Exercise 3.9

(i) Calculate the derivative of $f(x) = x^{-1} \ln(x) = \frac{\ln(x)}{x}$ over the domain $x > 0$.

Exercise 3.9

(i) Calculate the derivative of $f(x) = x^{-1} \ln(x) = \frac{\ln(x)}{x}$ over the domain $x > 0$.

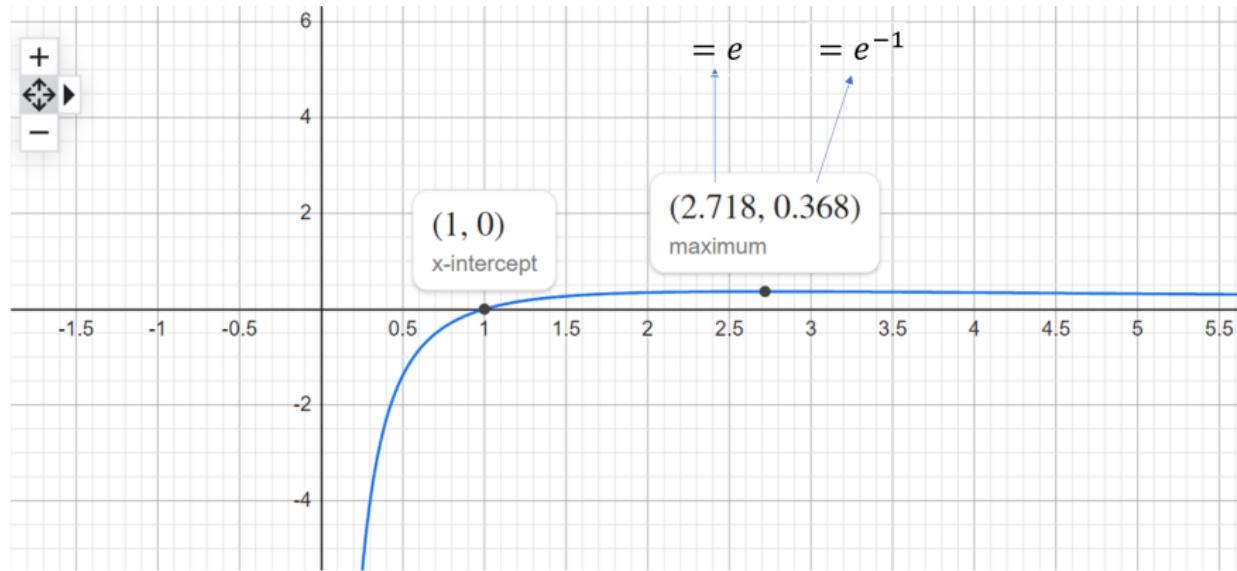
Answer:

$$\begin{aligned}f'(x) &= -x^{-2} \ln(x) + x^{-1}x^{-1} = -x^{-2} \ln(x) + x^{-2} = \\&= \frac{1}{x^2} [1 - \ln(x)]\end{aligned}$$

Exercise 3.9

(ii) Sketch the graph of f .

Graph for $\ln(x)/x$



Let us check analytically that:

1. "As $x \rightarrow 0^+$, $f(x) \rightarrow -\infty$."
2. " f first reaches 0 at $x = 1$."
3. " f has a maximum at $x = e$."
4. " $f(x)$ is increasing for $x \in (0, e)$ and decreasing for $x \in (e, +\infty)$."
5. " $\lim_{x \rightarrow +\infty} f(x) = 0$."

Let us check analytically that:

1. "As $x \rightarrow 0^+$, $f(x) \rightarrow -\infty$."
2. " f first reaches 0 at $x = 1$."
3. " f has a maximum at $x = e$."
4. " $f(x)$ is increasing for $x \in (0, e)$ and decreasing for $x \in (e, +\infty)$."
5. " $\lim_{x \rightarrow +\infty} f(x) = 0$."

Summary

The function $f(x)$ is defined for all x in the interval $(0, +\infty)$. It increases from $-\infty$ to e^{-1} as x moves from 0 to e . $f(x)$ has a root at $x = 1$ and at $x = e$, $f(x)$ achieves its maximum value of e^{-1} . Then it decreases to 0 as x goes from e to $+\infty$.

Exercise 3.9

(iii) For which values of x is there more than one value of y which satisfies the equation $x \ln(y) = y \ln(x)$?

Exercise 3.9

(iii) For which values of x is there more than one value of y which satisfies the equation $x \ln(y) = y \ln(x)$?

Note that we can rewrite $x \ln(y) = y \ln(x)$ as $\frac{\ln(y)}{y} = \frac{\ln(x)}{x}$, i.e., as $f(y) = f(x)$, thus:

- It is clear that $y = x$ is always a solution
- Moreover, based on the properties of $f(x)$ that we have just discussed we'll be able to describe the behaviour of this new equation too.

Exercise 3.9

(iv) For which values of x does the equation $x \ln(y) = 2y \ln(x)$ have:

- (a) no solutions
- (b) one solution
- (c) two solutions?

Exercise 3.9

(iv) For which values of x does the equation $x \ln(y) = 2y \ln(x)$ have:

- (a) no solutions
- (b) one solution
- (c) two solutions?

Let us rewrite $x \ln(y) = y \ln(x)$ as $\frac{\ln(y)}{y} = 2 \times \frac{\ln(x)}{x}$, i.e., $f(y) = 2 \times f(x)$ or $f(x) = \frac{1}{2}f(y)$.

Reconsider the intervals for x we've been analysing thus far:

- $x \in (0, 1]$
- $x \in (1, e)$ and $x \in (e, +\infty)$ and $x = e$

Exercise 3.5

Use the formula $\cos\left(\frac{\pi}{5}\right) = -\cos\left(2 \times \frac{2\pi}{5}\right)$ to obtain a cubic equation satisfied by the value of $\cos\left(\frac{\pi}{5}\right)$.

Exercise 3.5

Use the formula $\cos\left(\frac{\pi}{5}\right) = -\cos\left(2 \times \frac{2\pi}{5}\right)$ to obtain a cubic equation satisfied by the value of $\cos\left(\frac{\pi}{5}\right)$.

Trigonometric identities

- $\cos(\pi - x) = -\cos(\pi) \implies \cos\left(\frac{\pi}{5}\right) = -\cos\left(2 \times \frac{2\pi}{5}\right)$ for $x = \frac{4\pi}{5}$
- $\cos(2x) = 2\cos^2(x) - 1$