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AS1056 - Chapter 3, Tutorial 2, 03-11-2023. Notes.

Hello everyone, I’d like to go over the exercise we discussed on Friday, and provide
a detailed, step-by-step solution, especially for the more challenging sub-items (iii) and
(iv). By meticulously working through the initial sub-items, I believe we can successfully
tackle the entire exercise. So let’s get to it.

Exercise 1.4

(i) Calculate the derivative of f(x) = x−1 ln(x) = ln(x)
x

over the domain x > 0.
Solution:

f ′(x) = −x−2 ln(x) + x−1x−1 = −x−2 ln(x) + x−2 = 1
x2 [1 − ln(x)]

(ii) Sketch the graph of f .
Solution: Use your favourite graphing calculator to plot f(x) = ln(x)

x
:

As you can observe the function f(x) is defined for all x in the interval (0, +∞). It
increases from −∞ to e−1 as x moves from 0 to e. f(x) has a root at x = 1 and
achieves its maximum value of e−1 at x = e. Then it decreases very smoothly to 0 as
x goes from e to +∞.
Can we characterise the behaviour of f(x) analytically without relying on its graph?
Let’s attempt to derive a description comparable to the visual interpretation we have
just provided by proving the following properties analytically. Doing so will deepen
our understanding of f(x)’s characteristics, and help us in addressing sub-items (iii)
and (iv) of the exercise:
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(a) “As x → 0+, f(x) → −∞.” Recall that ln(x) is defined only for x > 0, hence
we should look at the limit as x → 0+, i.e., as x approaches 0 from the right
(indeed, because there are no values to the left of 0 in the domain of ln(x), the
limit x → 0 does not exist):

lim
x→0+

f(x) = lim
x→0+

ln(x)
x

= −∞
0+ = −∞

Why −∞
0+ = −∞? Think about −∞

0+ : on the one hand, a very big number over
a very small number will be equal to a very big number; on the other hand, a
negative number over a positive number will equal a negative number. For a more
rigorous solution we would probably need to use the definition of the limit (ε’s
and δ’s...).
Let us show also that limx→0+ ln(x) = −∞. Note that,

ln(x) = ln
(

1
1/x

)
= ln(1)︸ ︷︷ ︸

=0

− ln
(1

x

)
= − ln

(1
x

)
. It is clear that lim

x→0+

1
x

= +∞

=⇒ lim
x→0+

ln
(1

x

)
= +∞ then, lim

x→0+
ln(x) = lim

x→0+
− ln

(1
x

)
=

=
↑

by linearity property of the limits

− lim
x→0+

ln
(1

x

)
= −∞

(b) “f first reaches 0 at x = 1.” We just need to find the root(s) of x:

f(x) = ln(x)
x

= 0; ln(x) = 0; eln(x) = e0 = 1; x = 1

(c) “f has a maximum at x = e.”
−→ First we find the critical points by setting f ′(x) = 0 and solving for x:

1
x2 [1 − ln(x)] = 0; 1 − ln(x) = 0; ln(x) = 1; eln(x) = e1; x = e1 = e

At x = e, f(x) takes the value:

f(x = e) = ln(e)
e

= 1
e

= e−1

Thus, we have an critical point at (x = e, y = e−1), and checking that f ′′(x =
e) < 0 we conclude that f(x) has a local maximum at (e, e−1) (which indeed is
the absolute maximum of f(x)).

(d) “f(x) is increasing for x ∈ (0, e) and decreasing for x ∈ (e, +∞).”
• f(x) is increasing for x ∈ (0, e), i.e., f ′(x) > 0 for x ∈ (0, e). Note that for

x ∈ (0, e):

f ′(x) = 1
x2︸︷︷︸
>0

[
1 −

<1︷ ︸︸ ︷
ln(x)

]
︸ ︷︷ ︸

>0

−→ 1
x2 > 0 always, while ln(x) < 1 for x ∈ (0, e).

Thus, f ′(x) > 0 for x ∈ (0, e).
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• f(x) is decreasing for x ∈ (e, +∞), i.e., f ′(x) < 0 for x ∈ (e, +∞). Note that
for x ∈ (e, +∞):

f ′(x) = 1
x2︸︷︷︸
>0

[
1 −

>1︷ ︸︸ ︷
ln(x)

]
︸ ︷︷ ︸

<0

−→ 1
x2 > 0 always, while ln(x) > 1 for x ∈ (e, +∞).

Thus, f ′(x) < 0 for x ∈ (e, +∞).

Note: If you don’t see why ln(x) < 1 for x ∈ (0, e) and ln(x) > 1 for x ∈ (e, +∞)
just recall that ln(e) = 1 and that ln(x) is an increasing function1.

(e) “limx→+∞ f(x) = 0.”

lim
x→+∞

f(x) = lim
x→+∞

ln(x)
x

=
↑

l’Hôpital

lim
x→+∞

1/x

1 = 0

(iii) For which values of x is there more than one value of y which satisfies the equation
x ln(y) = y ln(x)?
Solution: Note that we can rewrite x ln(y) = y ln(x) as ln(y)

y
= ln(x)

x
, i.e., as f(y) =

f(x), thus:

• The equation f(y) = f(x) is symmetric in x and y: any point (x, y) that lies on
the curve will also have its reflection point (y, x) lie on the curve.

• When x = y, the equation f(y) = f(x) is trivially satisfied.
• Moreover, based on the properties of f(x) that we have just discussed we’ll be

able to describe the behaviour of this new equation too.

Hence, given that we have already thoroughly worked out the properties of f(x) on
the previous sub-items, I will suggest you to answer this sub-item analytically (using
what we know about f(x)), and afterwards check the conclusions obtained sketching
a graph of the equation.
Recall that f(x) is a function that starts from −∞ when x is close to 0, crosses the
x-axis at x = 1, achieves its maximum value at x = e and then smoothly decays to 0
as x grows larger and larger. Let us then consider the behaviour of f(x) —and then
infer the behaviour of f(y) = f(x)—, on the following intervals of x: (0, 1]; (1, e) and
(e, +∞); {e}.

1. For x ∈ (0, 1] there’s no other solution rather than y = x, since we know that:
• f(x) has a root at x = 1
• f(x) ≤ 0 for x ∈ (0, 1] and f(x) > 0 for x ∈ (1, +∞)
• f ′(x) ≥ 0 for x ∈ (0, 1] (i.e., monotonicity on (0,1])

For x within (0, 1], the function f(x) = ln(x)
x

is negative and increasing, where
f(x) crosses from negative to positive at x = 1. As a result, there is no x1 > 1
such that f(x1) = f(x0) for x0 in (0, 1] since f(x) is negative for x < 1 and

1 d ln(x)
dx = 1

x > 0 since ln(x) is only defined for x > 0.
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positive for x > 1. In addition, the monotonic nature of f(x) in (0, 1] tells us
that f(x) is a one-to-one function in this interval. In other words, since f(x) is
increasing for x ∈ (0, 1] we know that there’s no x′

0 ̸= x0, x′
0 ∈ (0, 1], such that

f(x′
0) = f(x0). Therefore, f(y) = f(x) is also a one to one mapping, i.e., the

only pair that satisfies the equation f(y) = f(x) for each x in (0, 1] is when y is
exactly x. This means the equation x ln(y) = y ln(x) has a unique solution y = x
in this interval.

2. x ∈ (1, e) and x ∈ (e, +∞).
• x ∈ (1, e) =⇒

f(x) ∈ (f(1) = 0, f(e) = e−1) ; f ′ ((1, e)) > 0 (increasing)
• x ∈ (e, +∞) =⇒

f(x) ∈ (f(e) = e−1, limx→+∞ f(x) = 0) ; f ′ ((e, +∞)) < 0 (decreasing)
Given the above and that we know there’s a maximum at x = e it is clear that for
every x0 ∈ (1, e) there exists one x1 ∈ (e, +∞) such that f(x0) = f(x1). Thus:
➢ For values x0 ∈ (1, e) there are two values of y that satisfy the equation

x ln(y) = y ln(x):
– y0 ∈ (1, e), in fact y0 = x0

– y1 ∈ (e, +∞)
➢ And vice versa, for values x1 ∈ (e, +∞) there are two values of y that satisfy

the equation x ln(y) = y ln(x):
– y0 ∈ (1, e)
– y1 ∈ (e, +∞), in fact y1 = x1

3. For x ∈ {e}, i.e., x = e, there’s no other solution rather than y = x.

−→ f(x = e) = ln(e)
e

= 1
e

= e−1 and the only y value such that,

f(y) = f(x = e) = e−1 is clearly y = e.

(iv) For which values of x does the equation x ln(y) = 2y ln(x) have:

(a) no solutions
(b) one solution
(c) two solutions?

Solution: Let us rewrite x ln(y) = y ln(x) as ln(y)
y

= 2 × ln(x)
x

, i.e., f(y) = 2 × f(x) or
f(x) = 1

2f(y).
Reconsider the intervals for x we’ve been analysing thus far:

1. x ∈ (0, 1]
2. x ∈ (1, e) and x ∈ (e, +∞) and x = e

1. As we have checked in the previous sub-items for x ∈ (0, 1] there is one and only
one solution for f(x) in this case =⇒ given that f(y) = 2f(x) then there is also
one and only one solution for f(y). In other words, for x ∈ (0, 1] there is one
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and only one y (and you can check that y ∈ (0, 1] for x ∈ (0, 1])2 which satisfies
x ln(y) = 2y ln(x).

2. x ∈ (1, e) and x ∈ (e, +∞) and x = e

Note that taken by separate both f(x) and f(y) range from −∞ up to e−1.
However, going back to f(y) = 2f(x) we notice that:

• If f(x) = −∞ =⇒ f(y) = 2 × (−∞) = −∞, which is fine.
• However, if f(x) = e−1 =⇒ f(y) = 2e−1, but this cannot happen since

f(y) ∈ (−∞, e−1]
So, implicitly, f(y) = 2f(x), i.e., f(x) = 1

2f(y) is telling us that for x ln(y) =
2y ln(x) to hold we need that f(x) ranges from −∞ up to 1

2e−1. And of course,
given the characteristics of f(x) that we have already studied, we know that there
will be two values of x such that f(x) = 1

2e−1. In particular, there is one value
x0 ∈ (1, e) such that f(x0) = 1

2e−1, and another value x1 ∈ (e, +∞) such that
f(x1) = 1

2e−1.3

Hence, f(y) = 2 × f(x) =⇒ f(x) ∈
(
−∞, 1

2e−1
]
. So, let us redefine the intervals

of x on which to analyse the behaviour of f(y) = 2 × f(x):
(1) 1 < x < x0 = 1.261070487
(2) x0 = 1.261070487 < x < x1 = 14.56100391
(3) x > x1 = 14.56100391
(4) x = x0 = 1.261070487; x = x1 = 14.56100391
(2) If x ∈ (x0, x1) there is no solution to the equation since f(y) cannot exceed

e−1.
(4) x = x0 =⇒ f(x0) = 1

2e−1 and x = x1 =⇒ f(x1) = 1
2e−1. In this case there

is only one value of y that makes f(x) = 1
2f(y) hold. This value is y = e,

which makes f(y) = e−1.
(1) and (3): for 1 < x < x0 and x > x1 there are two values of y that satisfy the

equation f(y) = 2f(x). This because of the characteristics of f(x) and that
in these range of values of x no violation of the range of f(y) occurs.

Remember to plot the equations of sub-items (iii) and (iv) and check the results!

2limx→0+ f(x) = −∞ =⇒ f(y) = 2 × (−∞) =⇒ y → 0+ and f(x = 1) = 0 =⇒ f(y) = 2 × 0 =⇒
y = 1.

3The equation 1
2 e−1 = ln(x)

x has not closed form solution, but you can approximate the values of x0
and x1 using some approximation method such as Newton-Raphson (we’ll see this on the 2nd term). In
particular x0 = 1.261070487 and x1 = 14.56100391.
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