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Big-O and little-o notation

Big-O notation

* Purpose: Describes an upper bound on the time complexity of an
algorithm in terms of the worst-case scenario.

+ Usage: Commonly used in computer science to analyse the efficiency of
algorithms.

+ Example: If an algorithm has a time complexity of O(nQ), it means that in
the worst case, the number of operations grows quadratically with the size
of the input.
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Big-O notation

Definition (I)
Let f and g be functions from R to R. We say that,

f(x) =0(g(x)) asx — oo

if there is at least one choice of a constant M > 0, for which you can find a
constant k such that:

f(2)] < Mg(x)| ie. ‘@ <M

9()

whenever x > k. Beyond some point k, function f(x) is at most a constant
M times g(z).

— f = O(g) (big-oh) if eventually f grows slower than some multiple of g
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We can also use this notation to describe the behaviour of a function nearby
some real number a (often a = 0).

Definition (II)
We say that,

f(@) = O(g(x)) asz — a
if there is at least one constant M such that,

al=»

for sufficiently small z.

The intuition behind big-oh notation is that f is O(g) if g(x) grows
as fast or faster than f(x) as z — a.
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Big-O and little-o notation

Little-o notation

« Purpose: Describes an upper bound, but in a stronger sense than big-O. It
indicates that a function grows strictly slower than the comparison
function.

+ Usage: Less common than Big O, but used when we need to express that
one function grows strictly slower than another.

- Example: If f(n) = nand g(n) = n?then f(n) = o(g(n)) asn — oo
because f(n) grows strictly slower than g(n).

While big-O gives an upper limit, little-o indicates that the function grows
strictly slower than the comparison function.
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Little-o notation

Definition (I)
Let f and g be functions from R to R. We say that,

f(@) = olg(a)) as & — o0

if for every constant M > 0, there exists a constant k such that whenever
7w >
f(z)

@) < Mlgle)] 1o Jim |22 =

— f = o(g) (little-oh) if eventually f grows slower than any multiple of g
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Similarly, to describe the behaviour of a function near some real number a

(often a = 0):
Definition (II)
We say that,
f(x) =o(g(z)) asz —a
if and only if:
tim | £ =
r—ra g(m’)

The intuition behind little-oh notation is that f is o(g) if g(x) grows
strictly faster than f(x) as = approaches 0.
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For the upcoming exercise recall the following proposition from your lecture
notes:

Proposition 2.1

The following two statements are equivalent:

1. If f is differentiable at ¢ with derivative f’(z)
2. Ash — 0, f(xzo + h) = f(zo) + hf'(x0) + o(h)

And using big-O notation the latter can be expressed as

f(zo+h) = f(zo) + O(h).
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Exercise 2.8

Use O and o notation to describe the behaviour of the following functions as
x approaches the given values:

(i) fa(z) =vV1+a2asz —0

Goal: understand/describe the behaviour of fs(x) as  approximates 0.
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Little-o notation

Note that:

1. Function Value at0: f»(0) = V1402 =1
2. First Derivative at 0:

falz) = %(1 +22)7V2 x 2z fh(0)=0

— f2(x) =14 o(x)asz — 0
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« f5(0) = 0, i.e, the rate of change of fao(x) at z = 0 is zero. This aligns
with the assertion that fa(z) = 1 + o(z), suggesting that near z = 0, the
function approaches the constant value 1 more slowly than x and does not
increase/decrease linearly with z. Instead, its change is almost negligible
compared to a linear rate, indeed it is getting flat/constant.

* The notation 1 + o(x) captures this idea: as x — 0, whatever change
happens in fao(z) from the value 1 is significantly lesser than the change in
x itself. In other words, o(x) goes faster to 0 than z.

In summary, “fa(x) = 1 4 o(x) as x — 0 " reflects that as x gets closer and
closer to 0, the function fa(z) gets closer to 1, and the deviation of fa(x)
from 1 grows at a rate that is slower than the rate at which = approaches 0.
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Note: fo(x) = 1 + o(x) as z — 0 implies that | could also express fa(x) as
fo(z) =1+ 0O(x)asz — 0.
1. fo(x) =14o(x)asz — 0

- This indicates that as  approaches 0, the difference between f5(z) and 1

becomes negligible compared to x. The function f2(x) — 1 grows much slower
than x.

2. fale) =14+ 0(x)asz — 0
- This indicates that as x gets close to 0, the function fy(z) is close to 1, and any
deviation from 1 is at most linear in magnitude with respect to x.

However, it is much more precise and informative to say fa(x) = 1 + o(x).
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Big-O notation

Binomial Theorem for Fractional Exponent

Letaw = %’ be a rational number (p, g integers). Then:

o)(a—1 = [«
(1+x)a:1+ax+%x2+...zz <k>wk

k=0
Therefore,
5 1 14
fo(z) =V1+z 1+2x g%
The first non-constant term in the expansion of fa(x) around x = 0 is

proportional to z2,
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— fa(z) =1+ O0(x?)asz — 0

When you're close to 0, the behaviour of fa(z) differs from the constant
function 1 by an amount that is at most proportional to 2.

Of course we can also say:
L 9 4
fo(x) =1+ 5% + O(z%)

1 1
fo(x) =1+ §x2 - §x4 + O($6)

f2(z) = 1+ O(=?) is more informative than fa(x) = 1 + O(x)

Since 22 grows slower than x near 0, this implies that f2(x) is even closer to
1 than what is suggested by the O(z) notation. This function behaves like a
parabola near 0, which is flatter than a line when close to 0.
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(i) f3(z) = pfqasz—3

« f3(3+h)=0.3—-0.08h+ o(h)
- fs(3)=03
- As x deviates from 3 by a small amount h, the function’s value decreases at a
rate of 0.08 times that deviation.
- The term o(h) represents error terms that become negligible compared to h as
h approaches 0.
Our approximation is mostly driven by the 0.3 and the —0.08A
components, especially when A is very small.
« f3(3+h) =03+ 0(h)
- fs(3) =03
- The O(h) notation suggests that the deviation of f3(3 + ) from 0.3 is at most
linear in h as h approaches 0.
However, this notation doesn’t specify the exact behaviour or rate of this
deviation. It does not specify the exact coefficient in front of & as in the
precise derivative calculation. It's a more general representation.
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(iv) fa(z) = ng—l) as T — %

Remember we're interested on the behaviour of f4(z) as « approaches %
Thus consider:

1
f4(%+h>: - 2 TN ? —
(3+h+2) (2x(3+h)-1)
1 h=T5
2h h+2.5
~ ~——
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