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Big-O and little-o notation

Big-O notation

• Purpose: Describes an upper bound on the time complexity of an
algorithm in terms of the worst-case scenario.

• Usage: Commonly used in computer science to analyse the efficiency of
algorithms.

• Example: If an algorithm has a time complexity of O(n2), it means that in
the worst case, the number of operations grows quadratically with the size
of the input.
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Big-O notation

Definition (I)
Let f and g be functions fromR toR. We say that,

f(x) = O(g(x)) as x → ∞

if there is at least one choice of a constant M > 0, for which you can find a
constant k such that:

|f(x)| ≤ M |g(x)| i.e.
∣∣∣∣f(x)
g(x)

∣∣∣∣ ≤ M

whenever x > k. Beyond some point k, function f(x) is at most a constant
M times g(x).

−→ f = O(g) (big-oh) if eventually f grows slower than some multiple of g
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We can also use this notation to describe the behaviour of a function nearby
some real number a (often a = 0).

Definition (II)
We say that,

f(x) = O(g(x)) as x → a

if there is at least one constant M such that,∣∣∣∣f(x)
g(x)

∣∣∣∣ ≤ M

for sufficiently small x.

The intuition behind big-oh notation is that f is O(g) if g(x) grows
as fast or faster than f(x) as x → a.
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Big-O and little-o notation

Little-o notation

• Purpose: Describes an upper bound, but in a stronger sense than big-O. It
indicates that a function grows strictly slower than the comparison
function.

• Usage: Less common than Big O, but used when we need to express that
one function grows strictly slower than another.

• Example: If f(n) = n and g(n) = n2 then f(n) = o(g(n)) as n → ∞
because f(n) grows strictly slower than g(n).

While big-O gives an upper limit, little-o indicates that the function grows
strictly slower than the comparison function.
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Little-o notation

Definition (I)
Let f and g be functions fromR toR. We say that,

f(x) = o(g(x)) as x → ∞

if for every constant M > 0, there exists a constant k such that whenever
x > k:

|f(x)| < M |g(x)| i.e. lim
x→∞

∣∣∣∣f(x)
g(x)

∣∣∣∣ = 0

−→ f = o(g) (little-oh) if eventually f grows slower than anymultiple of g
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Similarly, to describe the behaviour of a function near some real number a
(often a = 0):

Definition (II)
We say that,

f(x) = o(g(x)) as x → a

if and only if:

lim
x→a

∣∣∣∣f(x)
g(x)

∣∣∣∣ = 0

The intuition behind little-oh notation is that f is o(g) if g(x) grows
strictly faster than f(x) as x approaches 0.
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For the upcoming exercise recall the following proposition from your lecture
notes:

Proposition 2.1
The following two statements are equivalent:

1. If f is differentiable at x0 with derivative f ′(x0)
2. As h → 0, f(x0 + h) = f(x0) + hf ′(x0) + o(h)
And using big-O notation the latter can be expressed as
f(x0 + h) = f(x0) + O(h).
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Exercise 2.8

Use O and o notation to describe the behaviour of the following functions as
x approaches the given values:

(ii) f2(x) =
√

1 + x2 as x → 0

Goal: understand/describe the behaviour of f2(x) as x approximates 0.
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Little-o notation

Note that:

1. Function Value at 0: f2(0) =
√

1 + 02 = 1
2. First Derivative at 0:

f ′
2(x) = 1

2
(1 + x2)−1/2 × 2x; f ′

2(0) = 0

︸ ︷︷ ︸
−→ f2(x) = 1 + o(x) as x → 0
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• f ′
2(0) = 0, i.e., the rate of change of f2(x) at x = 0 is zero. This aligns

with the assertion that f2(x) = 1 + o(x), suggesting that near x = 0, the
function approaches the constant value 1 more slowly than x and does not
increase/decrease linearly with x. Instead, its change is almost negligible
compared to a linear rate, indeed it is getting flat/constant.

• The notation 1 + o(x) captures this idea: as x → 0, whatever change
happens in f2(x) from the value 1 is significantly lesser than the change in
x itself. In other words, o(x) goes faster to 0 than x.

In summary, “f2(x) = 1 + o(x) as x → 0 ” reflects that as x gets closer and
closer to 0, the function f2(x) gets closer to 1, and the deviation of f2(x)
from 1 grows at a rate that is slower than the rate at which x approaches 0.
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Note: f2(x) = 1 + o(x) as x → 0 implies that I could also express f2(x) as
f2(x) = 1 + O(x) as x → 0...
1. f2(x) = 1 + o(x) as x → 0

– This indicates that as x approaches 0, the difference between f2(x) and 1
becomes negligible compared to x. The function f2(x) − 1 grows much slower
than x.

2. f2(x) = 1 + O(x) as x → 0
– This indicates that as x gets close to 0, the function f2(x) is close to 1, and any

deviation from 1 is at most linear in magnitude with respect to x.

However, it is much more precise and informative to say f2(x) = 1 + o(x).
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Big-O notation

Binomial Theorem for Fractional Exponent

Let α = p
q be a rational number (p, q integers). Then:

(1 + x)α = 1 + αx + (α)(α − 1)
2!

x2 + ... =
∞∑

k=0

(
α

k

)
xk

Therefore,

f2(x) =
√

1 + x2 = 1 + 1
2

x2 − 1
8

x4...

The first non-constant term in the expansion of f2(x) around x = 0 is
proportional to x2.

Emilio Luis Sáenz Guillén Bayes Business School 13/16



−→ f2(x) = 1 + O(x2) as x → 0

When you’re close to 0, the behaviour of f2(x) differs from the constant
function 1 by an amount that is at most proportional to x2.
Of course we can also say:

f2(x) = 1 + 1
2

x2 + O(x4)

f2(x) = 1 + 1
2

x2 − 1
8

x4 + O(x6)
...

f2(x) = 1 + O(x2) is more informative than f2(x) = 1 + O(x)

Since x2 grows slower than x near 0, this implies that f2(x) is even closer to
1 than what is suggested by the O(x) notation. This function behaves like a
parabola near 0, which is flatter than a line when close to 0.
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(iii) f3(x) = x
x2+1 as x → 3

• f3(3 + h) = 0.3 − 0.08h + o(h)
– f3(3) = 0.3
– As x deviates from 3 by a small amount h, the function’s value decreases at a

rate of 0.08 times that deviation.
– The term o(h) represents error terms that become negligible compared to h as

h approaches 0.

Our approximation is mostly driven by the 0.3 and the −0.08h
components, especially when h is very small.

• f3(3 + h) = 0.3 + O(h)
– f3(3) = 0.3
– The O(h) notation suggests that the deviation of f3(3 + h) from 0.3 is at most

linear in h as h approaches 0.
However, this notation doesn’t specify the exact behaviour or rate of this
deviation. It does not specify the exact coefficient in front of h as in the
precise derivative calculation. It’s a more general representation.
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(iv) f4(x) = x−8
(x+2)(2x−1) as x → 1

2

Remember we’re interested on the behaviour of f4(x) as x approaches 1
2 .

Thus consider:

f4

(1
2

+ h

)
=

1
2 + h − 8(

1
2 + h + 2

) (
2 × (1

2 + h) − 1
) =

= 1
2h︸︷︷︸

→∞ as h→0

× h − 7.5
h + 2.5︸ ︷︷ ︸

<∞ as h→0
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