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The total differential

df = fedx + fydy + f.dz M

== Foundational concept in multivariate differential calculus.

"= |t expresses an infinitesimally small change in f as a linear combination of
infinitesimally small changes in the variables x, y, and z, i.e., dx, dy, dz.
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Approximation using differentials

Note that while the total differential provides an exact measure for infinitesimally
small changes, we often need to approximate changes over finite intervals...

The value that a function of three variables f (2, y, z) takes at some point
(x,y,2) = (xo + Az, yo + Ay, 20 + Az) can be approximated by:

f(zo + Az, yo + Ay, 20 + Az) =f (%0, Yo, 20) + fz(Z0, Y0, 20) Az

(2)
+ fy (20, Y0, 20) Ay + f2 (w0, Yo, 20) Az

K2

st This is straightforward to see by just considering the first-order (i.e. linear) Taylor
approximation in 3 dimensions (check Section 18.6.1 of Lecture Notes).
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3%

*# Alternatively —following the approach in Section 18.6 of the lecture notes—,
expression 2 can also be derived by taking,

Af = f(il'o + Al’,yo + Ay,Zo + AZ) - f(any();ZO)v ie.,
fxo+ Az, yo + Ay, 20 + Az) = f(x0, 90, 20) + Af 3)

and then approximating A f —using the definition of partial derivative— via
Af = fo(zo,Y0,20) Az + fy(0, Y0, 20) Ay + f2(z0, Yo, 20)Az. Replacing in
equation 3:

— flzo + Az, yo + Ay, 20 + Az) = fo(x0,y0, 20) + Af =~

~ fu(z0, Y0, 20) + fu(T0, Y0, 20) A + f,, (20, Yo, 20) Ay+

+ f2(%o0, Yo, 20) Az

Emilio Luis Sdenz Guillén Bayes Business School 413



How Af ~ fm(wOa Yo, ZO)Aw + .f'y(mOa Yo, ZO)Ay + fz(w09 Yo, ZO)AZ ?
Note that the definition of partial derivative tells us that:

f(xo + Az, yo, 20) — f(x0, Yo, 20)

fz(x0, Y0, 20) = lim

Ax—0 Ax
then,
A _
— fa(®0,%0,20) = J(@o + x’yo’ij) f<x0’y0’zo), for Ax small.
x

Therefore we have that:

 f(wo + Az, 90, 20) — f(%0, Y0, 20) = Az X f(%0, Y0, 20)
« fxo,y0 + Ay, 20) — f(x0, Y0, 20) = Ay X fy(x0,Y0, 20)
* f(®0,%0, 20 + Az) — f(20,Y0,20) = Az X f.(%0, Y0, 20)
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Itis interesting to also notice that the definition of first partial derivative is closely
related to the concept first-order (linear) Taylor approximation. Take a first-order
Taylor approximation of f(x + Ax,y, z) at (zo, Yo, 20):

f(x,y,2) = f(xo, Y0, 20) + [2(Z0, Y0, 20) Az + fy(x0, Y0, 20) Ay+
+ f2(z0,y0, 20)Az

now holding y and z constant (i.e., y = yo Yy, 2 = 2o Vz), and given that
T = 29 + Az (since Ar = x — xq):

f(zo + Az, 90, 20) = f(w0, 0, 20) + fe(T0, Yo, 20)Az.
Re-arranging this expression we obtain:

fz(x0, Y0, 20) = f(a,y, z) _A{E(‘ro?yO)ZO)

and letting Az — 0, we get the equality (note that the terms involving (Az)™, n > 1

in the Taylor expansion will go faster to 0 than the linear term f,(xo, Yo, z0) X Ax):

. f(zo+ Az, y0, 20) — f(z0, 0, 20)
T ) 5 =1
fo(x0:y0,20) = lim Ay
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Let us get back to the approximation of A f. Operating and replacing in A f we have
that:

Af = f(zo+ Az,yo + Ay, 20 + Az) — f(z0, Y0, 20) =
= f(zo + Az, yo + Ay, 20 + Az) — f(20,y0 + Ay, 20 + Az) +
~ATX fo (z0,y0+ Ay, 20+A%)
+ f(zo,y0 + Ay, 20 + Az) — f(%0, Yo, 20 + A2) +
~AYX fy (090,20 +A%)
+ f(zo,v0, 20 + Az) — f(x0,Y0,20) ~
~AzX f2(20,90,20)
~ Az X fo(xo,y0 + Ay, 20 + Az) + Ay X fy (20, Y0, 20 + Az)+
+ Az x f.(x0,Y0,20) for Az, Ay, Az small.
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Assuming that the first partial derivatives are continuous, we have that:

o fu(zo,y0 + Ay, 20 + Az) — fi(0,%0,20) asAy —0,Az— 0
® fy (%0, Y0, 20 + A2) = fy(0,Y0, 20) asAz — 0

Then, letting Ay — 0, Az — 0, we finally get:

Af = fu(wo,90, 20) Az + fy(20, Y0, 20) Ay + f-(Z0, Yo, 20) Az

The above expression approximates the change in the function f for finite changes in
the variables (Ax, Ay, Az).
In the limit, Az, Ay, Az — 0, (by convention) this becomes the total differential:

The total differential is a foundational concept of multivariate differential calculus, in
particular, it provides the exact change in f for infinitesimally small changes (dz, dy,
dz).
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For further intuition, let me rewrite the total differential formula as:

f — f - _|_f +fzf = fx+fyd —i—fz—z (Chain Rule)

The effect that an infinitesimal change of = has in f is equal to the direct effect that
this change of = has into f, plus the indirect effect that this change of = has into f
through y and z.
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Example:

f: The premium amount for the life insurance policy.
x: Mortality risk

y: Expenses (administrative and operational)

z: Investment return

* Direct Effect: An increase in mortality risk means the insurer is more likely to make a
payout, which directly increases the premium required to cover this risk.

Indirect Effect through Expenses: Higher mortality risk can lead to increased claim
processing costs, indirectly raising the premium needed to cover these additional
operational expenses.

Indirect Effect through Investment Return: A rise in mortality risk could necessitate a
more conservative investment strategy to ensure funds are available for potential
claims, possibly reducing investment income and indirectly affecting the premium
calculation.
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Exercise 18.10

Use the definition of differential to work out the approximate value of the number
101398 cos(m + 0.1).

You may do this by using the definition of the differential of a function of three
variables f(x,y, 2) = 23, /y cos(2):

df = faxdx + fydy + fzdz.
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Maximums, minimums and saddle points

1. Stationary Points. To locate the stationary points of a multivariate function, we take
first partial derivatives and equate to zero. In other words, set V f = 0.

2. Classify Stationary Points. Calculate the eigenvalues of the Hessian at each
stationary point:

2 2
LJ;,)\ 9 f

det(H(f) = M) = |22, " 7% | = (faw = N(fyy = A) = f2,=0
Oyox 87y2_)\

- If Ay > 0and Ao > 0: (local) minimum.
- If A1 < 0and A2 < 0: (local) maximum.
- Ifsign A1 # sign A2: saddle point.
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Exercise 18.12

Find all the stationary points of the function

flay) = (@+y)* — 2 —y* — 6y

and identify their type.
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