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Exercise 16.5
A first-order linear recurrence relation with variable coefficients has the following generic form:

an = bnan−1 + cn

where the coefficient bn defines a sequence by itself. The exercise gives us:

an = 1
n − 1︸ ︷︷ ︸

=bn

an−1 + n

therefore,

bn = 1
n − 1 and

n∏
i=1

bi = bnbn−1...b1 = 1
(n − 1)!

Thus, in order to apply the “trick” presented in section 16.6.1 of the lecture notes, we multiply by
(n − 1)! on both sides of our recurrence relation:

An := an

bnbn−1...b1
= (n − 1)!an =

= (n − 1)!
n − 1︸ ︷︷ ︸

=(n−2)!

an−1 + n(n − 1)!︸ ︷︷ ︸
=n!

= bnan−1 + cn

bnbn−1...b1
= An−1 + Cn

Note that we have transformed our first-order linear recurrence relation with variable coefficients
into a first-order difference equation An = An−1 + Cn. Let us rewrite this as An − An−1 = Cn and
notice that:

n = 2 : ��A2 − A1 = 2!
n = 3 : A3 −��A2 = 2!
...

...
n = N − 1 : ���AN−1 − AN−2 = (N − 1)!
n = N : AN −���AN−1 = N !

Thus, taking the sum from n = 2 up to n = N we get:

AN − A1 =
N∑

n=2
n!; AN = A1 +

N∑
n=2

n!
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Finally, applying the boundary condition a1 = 1, we get:

A1 = (1 − 1)! a1︸︷︷︸
=1

= 1 =⇒ AN = 1 +
N∑

n=2
n! =

↑
1! = 1

N∑
n=1

n! = (N − 1)!aN

−→ aN = 1
(N − 1)!

N∑
n=1

n!
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Exercise 16.6 The sequence {an : n = 0, 1, 2, ...} is defined by:

• a0 = 3

• an = n
n+1an−1 + 1 −→ (n + 1)an︸ ︷︷ ︸

=cn

= nan−1︸ ︷︷ ︸
=cn−1

+(n + 1)

That is, defining cn = (n + 1)an, we can rewrite our recurrence relation as:

cn = cn−1 + (n + 1)

Note that again we have transformed a first-order linear recurrence relation with variable coefficients
into a first-order difference equation. Indeed, without noticing it, we have implemented the same
“trick” of section 16.6.1, since ∏n

i=1 bi = bnbn−1...b1 = n
n+1

n−1
n ...1

2 = n!
(n+1)! = 1

n+1 . Let us write
some terms of this sequence:

First, using the definition of cn,
c0 = (0 + 1)a0 = 3
Now, using the recurrence relation,
c1 = c0 + (1 + 1)
c2 = c1 + (2 + 1) = c0 + (1 + 1) + (2 + 1)
c3 = c2 + (3 + 1) = c0 + (1 + 1) + (2 + 1) + (3 + 1)
...

cn = c0 + (1 + 1) + (2 + 1) + (3 + 1) + ... + (n + 1) = c0 +
n∑

k=1
(k + 1) = c0 +

n∑
k=1

k︸ ︷︷ ︸
= n(n+1)

2

+
n∑

k=1
1︸ ︷︷ ︸

=n

Then,

cn = 3 + n(n + 1)
2 + n = 6 + n2 + n + 2n

2 = n2 + 3n + 6
2

that is,

an = n2 + 3n + 6
2(n + 1)

The exercise has already been solved. There is no need for mathematical induction or any
further proof since the solution is entirely based on basic principles of algebra. Indeed, the inclusion
of mathematical induction in the context of solving recurrence relations, serves more pedagogical
purposes than practical ones.

Try to solve the exercise following the solutions provided by Russell, and consider why, after
arriving at the induction hypothesis through such an approach, it is necessary to prove it.
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∑n
k=1 n = n(n+1)

2
Proof:
Let S = ∑k

k=1 and note:

S = 1 + 2 + ... + n

S = n + (n + 1) + ... + 1︸ ︷︷ ︸
2S = S + S = (n + 1) + (n + 1) + ... + (n + 1) = n(n + 1)

−→ S = n(n + 1)
2

For the sake of completeness let me present the induction proof. Following the steps suggested
by the solutions provided by Russell, you arrive to propose

an = n2 + 3n + 6
2(n + 1)

as induction hypothesis. The induction proof would then proceed as follows:

(v) Base case.

For n = 0, a0 = 02+3×0+6
2(0+1) = 6

2 = 3 ✓

(vi) Induction step. Assume that an = n2+3n+6
2(n+1) holds (induction hypothesis). Then, we want to

show that:

an+1 = (n + 1)2 + 3(n + 1) + 6
2(n + 2) = n2 + 2n + 1 + 3n + 3 + 6

2(n + 2) = n2 + 5n + 10
2(n + 2)

The recurrence relation we were given tells us that:

an+1 = n + 1
n + 2an + 1 =

↑
by induction hypothesis

���n + 1
n + 2

n2 + 3n + 6
2(���n + 1) + 1 = n2 + 3n + 6 + 2n + 4

2(n + 1) = n2 + 5n + 10
2(n + 2) ✓

□
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