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Exercise 14.3/14.4 (ii)
Determine the solution to the ODE:

1+ 0D 4y = 20 40

satisfying the boundary condition ¢'(1) = 0. The way the exercise is posed suggests we should solve
it using the Complementary function and Particular Integral method. The latter involves finding
out:

o The particular integral n(x), which satisfies n'(x) + a(z)n(z) = b(zx)
o The complementary function yo(x), which satisfies y,(z) + a(z)yo(x) = 0

For instance, let’s try to find out the particular integral n(x), but instead of using the hint provided
in the lecture notes, we’ll implement the integrating factor method.

(a) We want to find a function n(x) which satisfies the differential equation:
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Let us rewrite this first order linear ODE as:
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The integrating factor is:

I(x) :exp< 1ixd:n>

To solve the above integral let us substitute u = 1 + x:
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Multiplying by I(z) on both sides of the ODE, we know we get:
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that is,
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Integrating both sides from 0 to x:
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Now, you may have already noticed that what we’ve just found out is actually the general
solution to the ODE. Indeed, finding the general solution for n(zx) is tantamount to solving the
differential equation itself. On the other hand, if we follow the hint provided in the lecture notes
and use a guess for n(x), we will arrive at a particular solution for n(z). In such a case, we
must continue with the steps of the Complementary Function (CF) and Particular Integral (PI)
method to find the general solution of the ODE.

The method of CF and PI is traditionally applied to second-order (or higher) linear ODEs, and
its utility and rationale become clearer in that context. This is why it is crucial to become
familiar with this method from the very beginning, even if applying it to first-order linear ODEs
might seem a bit nonsense —especially when the integrating factor method presents a much
more straightforward alternative.

Applying the boundary condition 7'(1) = 0:
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Then,
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Finally,

— ) =yx) =20 +2)+e "1 +2)2e+2—-2) =21 +z)(1 + ')

The exercise would be already solved. However —and in order to remain as faithful as possible
to what the lecture notes’ statement of the exercise tells us—, we could have, alternatively,
proceeded as follows. Note that the hint suggests finding a particular integral of the form
n(z) = (A+ Bzx). Given the general solution we have just obtained for n(z), this implicitly tells
us that we need to impose the boundary condition 1n(0) = 2, in order to get to the particular
solution “the hint want us to get to”. That would be n(x) = 2(1 + x). Please check if you arrive
to the same result by setting n(x) = A + Bz and replacing on the ODE, as the lecture notes
suggest.

The second step is to find the complementary function, that is, the solution to the homogeneous
equation associated with the original differential equation. So we need to solve for yo(x) the
following;:

(1 + 2)yH(x) + xyo(x) =0
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Integrating on both sides w.r.t x,
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Finally, we get:
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(¢) Now that we have both the particular integral and the complementary function, we can say
that, by the superposition principle theorem (see tutorial slides), the general solution of the
given ODE is:

y(x) = n(x) + yo(x) = 2(1 + ) + (1 +2)e” "
And now we can apply the boundary condition 3/(0) = 1:
(@) =24+e" T —(1+a)ef T =24+e"2(f - —z)=2—2e’®
Thus,
y(1)=2—2e"1=0;, 2=¢"1 =2
Finally, the particular solution of the ODE is:
y(x) = n(z) +yolr) =21+ ) + (1 +x)er ™ =2(1 +2)(1 + ')
which is the same we got on (a) solving directly with the integrating factor method.

Exercise 14.10

= aa(t) - Ba(t)y(t)

(i) 2(0) = 100; y(t) = yoe* "
The first Lotka-Voltera equation is a separable ODE and thus we can easily operate,

dx(t) dz(t)
dt x(t)

= z(t) (o — By(t)); = (a— By(t)) dt

Integration both sides between 0 and ¢:
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then,
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Finally,
() = 100 exp (at — 1008y (eo-olt - 1))
Now take the exponent of this expression:
at — 1008yg (60'0” — 1)
Let us find the maximum of this expression. Taking first derivatives and equating to zero:
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And checking that the second derivative is negative:

—0.018y0e” 0t < 0 V¢
we confirm that ¢* is a maximum. We conclude that dflsf) > 0 for t < t* and that dzgt) < 0 for
t > t*. In other words, the population of rabbits increases up to t* and then it decreases from ¢*
onwards. Note that this holds only if a > Sy, since otherwise t* < 0, which would imply that the
population of rabbits is decreasing from ¢ = 0.




