

AS1056 - Mathematics for Actuarial Science. Chapter 10, Tutorial 2.

Emilio Luis Sáenz Guillén

Bayes Business School. City, University of London.

February 15, 2024

Refreshing some concepts: Geometric interpretation of vectors and matrices

In linear algebra, we are interested in equations of the following form:

$$\mathbf{u} = A\mathbf{v}$$

where $\mathbf{u} \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, and $\mathbf{v} \in \mathbb{R}^n$.

- One way to think about this equation is that A represents a system of m linear equations, each with n variables, and \mathbf{v} represents the unknowns to this system.
- But there is another way to think of the matrix A , which is as a linear function f from \mathbb{R}^n to \mathbb{R}^m ,

$$f(\mathbf{v}) = A\mathbf{v}$$

i.e. as a mapping $A : \mathbb{R}^n \rightarrow \mathbb{R}^m$.

- If $m = n$, meaning the matrix A is square, then the linear transformation maps \mathbb{R}^m onto itself. This can represent various geometric transformations (rotations, reflections, scaling, etc.) within the same dimensional space, \mathbb{R}^m .
- The *unit square* plays a significant role in the geometric interpretation of matrices as linear transformations, serving as a fundamental and intuitive example for visualising how transformations affect space.

With a geometrical understanding of matrices as linear transformations, many concepts in linear algebra are easier to appreciate: invertibility, rank, eigenvalues,...

Determinant of 2×2 Matrix

If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then $\det(A) = ad - bc$.

In geometrical terms:

- A square matrix represents a mapping of a space on to itself,
 $A : \mathbb{R}^2 \rightarrow \mathbb{R}^2$.
- The *absolute value of the determinant* is the area of the image of the unit square under the mapping A .

Take $A \in \mathbb{R}^{2 \times 2}$ (i.e., a 2×2 matrix), then:

- If $\det(A) > 0$, the linear transformation **preserves** the orientation of the vertices of the shape it transforms.
- If $\det(A) < 0$, the linear transformation **reverses** the orientation of the vertices of the shape it transforms.
 - If you start at one corner of a unit square and move around its edges in an *clockwise* direction, after the transformation by a matrix with a negative determinant, the corresponding path around the transformed figure (i.e., the image of the original square) would be in a *anticlockwise* direction
- If $\det(A) = 0$, then matrix A represents a linear transformation that collapses the space to a lower dimension (such as a square becoming a line or a 3D object becoming a flat shape).

The determinant gives the **scaling factor** (in terms of the square area) and the **orientation** induced by the mapping represented by A .

Exercise 11.7

- (i) For each of the following matrices, draw the unit square and its image under the mapping which the matrix represents.
- (ii) In each of the three cases, apply the mapping a second time. What would you expect to happen if the mapping were applied repeatedly?

a)
$$A_1 = \begin{pmatrix} 2 & -2 \\ 2 & 2 \end{pmatrix}$$

Exercise 11.9

(i) What is the area of the image of the unit square under the mapping represented by

$$A = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}?$$

(ii) Write down matrices representing

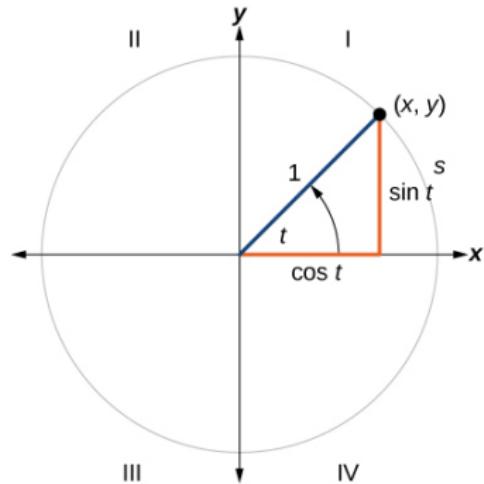
- a) An enlargement by which areas are multiplied by a factor of 3.

(ii) Write down matrices representing

b) A rotation through an angle of $\pi/6$.

Hint: A rotation through the angle θ is represented by:

$$A_\theta = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$



(ii) Write down matrices representing

- c) A rotation through an angle of $\pi/6$ and an enlargement which multiplies areas by 3.

Exercise 11.11

A is a 2×2 matrix with determinant equal to 0.

- (i) Assume that the first row of A is not equal to $(0 \ 0)$. Show that the second row of A is a multiple of the first row.
- (ii) Assume that the first column of A is not equal to $(0 \ 0)^T$. Show that the second columns of A is a multiple of the first.