

AS1056 - Chapter 10, Tutorial 2. 08-02-2024. Notes.

Exercise 10.10

- $\text{Two}(n)$: “ n is equal to two”.
- $\text{Even}(n)$: “ n is equal to an even number”.
- $\text{Prime}(n)$: “ n is equal to a prime number”.

“If n is a prime number and $n \neq 2$, then n is odd”. In logical notation:

$$\forall n \ [\text{Prime}(n) \wedge \neg \text{Two}(n)] \implies \neg \text{Even}(n)$$

The contrapositive of this statement is:

$$\forall n \ [\text{Even}(n) \implies \neg [\text{Prime}(n) \wedge \neg \text{Two}(n)] = [\neg \text{Prime}(n) \vee \text{Two}(n)]]$$

Putting this in words: “If n is an even number, then either n is not prime or n is equal to two”. Indeed, the only even prime number is 2.

Exercise 10.7

W.t.s. that $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}$ s.t. $n^2 + n = 2k$. Let us recall that, by definition, an even number is an integer of the form $n = 2k$, $k \in \mathbb{Z}$. Therefore, given the definition of even number, to prove the latter statement we only need to show that $n^2 + n$ is even.

$n \in \mathbb{Z}$, we don't know if even or odd. To show that $n^2 + n$ is even let us consider the case where n is even and the case where n is odd, and try to say something about the evenness/oddness of $n^2 + n$

1. Assume n is even and consider the following predicates,

- P: $\text{Even}(n)$
- Q: $\forall n \ [\text{Even}(n) \implies \text{Even}(n^2)]$

Proof: If n is even, then by definition of even number, there exists $k \in \mathbb{Z}$ s.t. $n = 2k$; thus, $n^2 = 4k^2 = 2 \underbrace{(2k^2)}_{k'} = 2k'$, and therefore, by definition, n^2 is also even.

- R: $\forall n, \forall m \ [\text{Even}(n) \wedge \text{Even}(m) \implies \text{Even}(n + m)]$

Proof: Also using the definition of even number, take,

$$\left. \begin{array}{l} n = 2k \\ m = 2k' \end{array} \right\} \text{then, } n + m = 2k + 2k' = 2(k + k') = 2k''; \text{ thus, } n + m \text{ is also even.}$$

Therefore, $\frac{P; Q; R}{\therefore \text{Even}(n^2 + n)}$.

2. Assume n is odd and consider the following predicates,

- P' : $\neg \text{Even}(n)$
- Q' : $\forall n [\neg \text{Even}(n) \implies \neg \text{Even}(n^2)]$
 Proof: By complementarity of statement Q . You can also use the definition of odd number.
- R' : $\forall n, \forall m [\neg \text{Even}(n) \wedge \neg \text{Even}(m) \implies \text{Even}(n + m)]$
 Proof: Using the definition of odd number, take,

$$\left. \begin{array}{l} n = 2k + 1 \\ m = 2k' + 1 \end{array} \right\} \text{then, } n + m = 2(k + k') + 2 = 2 \underbrace{(k + k' + 1)}_{k''} = 2k''; n + m \text{ is even.}$$

$$\text{Therefore, } \frac{P'; Q'; R'}{\therefore \text{Even}(n^2 + n)}.$$

We conclude that $n^2 + n$ is always even. And then, by the definition of even number, $\exists k \in \mathbb{Z}$ s.t. $n^2 + n = 2k$.

Exercise 10.12

The proof goes wrong in point 5, by making the implicit assumption that the two groups of n people —Group A={Person 1, ..., Person n } and Group B={Person 2, ..., Person $n + 1$ }— to which the induction hypothesis is applied have a common element. This is not true for $n = 1$, in which case there is no overlap between the groups (i.e., $\text{Group A} \cap \text{Group B} = \emptyset$). The inductive step presented would indeed have worked if we assume $n \geq 2$ (i.e., if $n \geq 2$, $S(n) \implies S(n + 1)$); however, in such circumstances it would be the base case the one failing in this proof by mathematical induction.