

AS1056 - Chapter 0, Tutorial 2. 13-10-2023. Notes.

Hello everybody, sorry I think I was not completely clear with some of the exercises I solved today, so let me make some clarifications as follows:

Exercise B.5 (ii)

If you take the infinitely many rational numbers away from the infinitely many real numbers, are you left with: (c) an uncountably infinite set.

I will show that this is correct by showing that \mathbb{R} is countable **if and only if** $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ is countable, in other words: \mathbb{R} countable $\iff \mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ countable. Note that if the latter is correct, it implies then that if \mathbb{R} is uncountable (which it is actually the case) then, $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ is uncountable (of course, I am proving the latter because it is easier).

Proof:

(\implies) : Assume that \mathbb{R} is countable. Now, note that $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q} \subseteq \mathbb{R}$ which implies that $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ is countable since it is contained within a countable set, \mathbb{R} (since we assumed \mathbb{R} to be countable).

(\impliedby) : Assume now that $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ is countable. Consider the set $\mathbb{R} \setminus \mathbb{Q} \cup \mathbb{Q}$, which is countable since the rational numbers set \mathbb{Q} is countable (check your lecture notes) and we have assumed $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ to be countable (and as we have shown on B.5(i) the union of countable sets is countable). Now note that $\mathbb{R} \subseteq \mathbb{R} \setminus \mathbb{Q} \cup \mathbb{Q}$ (indeed these two sets are equal!); therefore, \mathbb{R} is countable since it is contained within a countable set.

ALTERNATIVE ARGUMENT:

We know that \mathbb{R} (the set of real numbers) is uncountably infinite. We know that \mathbb{Q} (the set of rational numbers) is countably infinite. Assuming for the sake of contradiction that $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$ is countably infinite, then the union of two countably infinite sets, namely $\mathbb{R} \setminus \mathbb{Q}$ and \mathbb{Q} , would also be countably infinite (as the union of two countable sets is countable). However, $\mathbb{R} \setminus \mathbb{Q} \cup \mathbb{Q} = \mathbb{R}$ and we know \mathbb{R} is uncountably infinite, leading to a contradiction. Thus, $\mathbb{R} \setminus \mathbb{Q}$ must also be uncountably infinite.

Exercise E.2 (i) Show that 6 makes exactly 3 appearances, i.e., that it cannot occur again lower down in the triangle.

We can find out (by hand, let's say) which are the 3 appearances of 6 in Pascal's triangle: $\binom{6}{1}$, $\binom{4}{2}$ and $\binom{6}{5}$. Now, what might be more challenging is to show that 6 will not appear again in Pascal's triangle.

Note that a specific integer can appear at most once in each of the sets $\{^n C_1 : n = 1, 2, 3, \dots\}$, $\{^n C_2 : n = 1, 2, 3, \dots\}, \dots$. This is because the number in the position $^n C_k$ (for any k and any n) is derived from the sum of two numbers above it in the triangle, and hence these grow as you move down the triangle, that is: $\dots < ^{n-1} C_k < ^{n+1} C_k \dots$

- Consider the set $\{^n C_1 : n = 1, 2, 3, \dots\}$, can we find an n such that $^n C_1 = 6$? Yes, as we have already mentioned, this is 6 since $\binom{6}{1} = 6$.
- Consider the set $\{^n C_2 : n = 1, 2, 3, \dots\}$, can we find an n such that $^n C_2 = 6$? Yes, as we have already mentioned, is 4 since $\binom{4}{2} = 6$.

- Consider the set $\{^nC_3 : n = 1, 2, 3, \dots\}$, can we find an n such that $^nC_3 = 6$? No since: $\binom{3}{3} = 1$, $\binom{4}{3} = 4$, $\binom{5}{3} = 10, \dots$ and any other $\binom{k}{3}$ for $k > 5$ will be > 10 as we have discussed before.
- Consider the set $\{^nC_4 : n = 1, 2, 3, \dots\}$, can we find an n such that $^nC_4 = 6$? No since: $\binom{4}{4} = 1$, $\binom{5}{4} = 5$, $\binom{6}{4} = 15, \dots$ and any other $\binom{k}{4}$ for $k > 6$ will be > 15 as we have discussed before.
- Consider the set $\{^nC_5 : n = 1, 2, 3, \dots\}$, can we find an n such that $^nC_5 = 6$? Yes, as we have already mentioned, this is 6 since $\binom{6}{5} = 6$.
- Consider the set $\{^nC_6 : n = 1, 2, 3, \dots\}$, can we find an n such that $^nC_6 = 6$? No since: $\binom{6}{6} = 1$, $\binom{7}{6} = 7$, $\binom{8}{6} = 28, \dots$ and any other $\binom{k}{6}$ for $k > 8$ will be > 28 as we have discussed before.

And so on...