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Geometrically Designed Splines (GeDS)
Free-knot spline regression technique based on a residual-driven (locally-adaptive)
knot insertion scheme that produces a piecewise linear spline fit, over which
smoother higher order spline fits are subsequently built (Kaishev et al., 2016,
Dimitrova et al., 2023).

h GeD spline methodology is extended further by:
1. GAM-GeDS: encompassing Generalized Additive Models (GAM), thereby making

GeDS highly multivariate.
2. FGB-GeDS: incorporating Functional Gradient Boosting (FGB), improving the

construction of the underlying spline regression model.

︸ ︷︷ ︸
• Applications in highly multivariate contexts: AI (e.g., image
recognition/processing); robotics (e.g. motion planning for
humanoid robots).

• Implemented in the R package GeDS, available from CRAN:
https://cran.r-project.org/package=GeDS
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4. Functional Gradient Boosting with GeDS (FGB-GeDS)

• Functional Gradient Boosting (Friedman, 2001).

h FGB-GeDS deals withmajor limitations of mainstream boosting algorithms:

• “Prone to overfitting”

à Optimal number of boosting iterations determined by a stopping rule based on
a ratio of consecutive deviances.

• “Large number of parameters and unstable performance”

à Strength of the base learners is automatically regulated by the GeDS technique
itself, and flexibly controlled through the GeDS parameters.

• “Black-boxmodels”

à Final FGB-GeDS boosted model expressed as a single spline model, which
simplifies its evaluation and enhances interpretability.
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Task: Fourier Transform Computation of Materials
Science Data

Given a sample, L = {F (Qi), Qi}N
i=1, 0 < Q1 < ... < QN < Q̃max, we are

interested in estimating the Fourier transform (imaginary part):

G(r) = 2
π

∫ Qmax

0
F (Q) sin(Qr)dQ.

Assuming Qmax is known, this involves two steps:

Step 1. Estimate F (Q) through a GeDS fit ≡ S(Q) to the sample L.

Step 2. Compute G(r) using the fitted GeDS model, S(Q).

For the time being, let us assume Qmax ≡ Q̃max, though in general Qmax < Q̃max:

à Signal in the data prevails up to a certain point; beyond this, only noise remains.

à Sequential (and costly) data collection: cut off at the appropriate Qmax for an
optimal experimental design.
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Step 1. Fit F (Q), e.g, with an FGB-GeDSmodel
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Step 2. Compute the Fourier transform of gold

Proposition
For the sin() transform,

G(r) = 2
π

∫ Qmax

0
F (Q) sin(Qr)dQ

of the function F (Q), approximated by S(Q) of order n = 2s, s = 1, 2, 3, . . . we
have

G(r) ≈ (−1)s2(n − 1)!
πrn

p∑
i=1

θ̂i (ti+n − ti)
i+n∑
j=i

sin(tjr)
i+n∏
l=i
l ̸=j

(tj − tl)
,

where r ∈ R+, p = k + n; θ̂i, i = 1, . . . , p are the GeDS regression coefficients.
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