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Motivation

Geometrically Designed Splines (GeDS)

Free-knot spline regression technique based on a residual-driven (locally-adaptive)
knot insertion scheme that produces a piecewise linear spline fit, over which
smoother higher order spline fits are subsequently built (Kaishev et al., 2016,
Dimitrova et al., 2023).

¥

*# GeD spline methodology is extended further by:

1. GAM-GeDS: encompassing Generalized Additive Models (GAM), thereby making
GeDS highly multivariate.

2. FGB-GeDS: incorporating Functional Gradient Boosting (FGB), improving the
construction of the underlying spline regression model.
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*# GeD spline methodology is extended further by:

1. GAM-GeDS: encompassing Generalized Additive Models (GAM), thereby making
GeDS highly multivariate.

2. FGB-GeDS: incorporating Functional Gradient Boosting (FGB), improving the
construction of the underlying spline regression model.

+ Applications in highly multivariate contexts: Al (e.g., image
recognition/processing); robotics (e.g. motion planning for
humanoid robots).

+ Implemented in the R package GeDS, available from CRAN:
https://cran.r-project.org/package=GeDS
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4. Functional Gradient Boosting with GeDS (FGB-GeDS)

+ Functional Gradient Boosting (Friedman, 2001).

[+ FGB-GeDS deals with major limitations of mainstream boosting algorithms:]

J “Prone to overfitting”

u#  Optimal number of boosting iterations determined by a stopping rule based on
a ratio of consecutive deviances.

J “Large number of parameters and unstable performance”

u# Strength of the base learners is automatically regulated by the GeDS technique
itself, and flexibly controlled through the GeDS parameters.

3 “Black-box models”

m#  Final FGB-GeDS boosted model expressed as a single spline model, which
simplifies its evaluation and enhances interpretability.
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Application to Materials Science Data
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Task: Fourier Transform Computation of Materials
Science Data

Given a sample, £ = {F(Qi),Qi}iI\il, 0<@Q1<... < QN < Qmax, We are
interested in estimating the Fourier transform (imaginary part):

2

™

Qmax
G(r) / F(Q)sin(Qr)dQ.
0
Assuming () max is known, this involves two steps:
Step 1. Estimate F(Q) through a GeDS fit = S(Q) to the sample L.
Step 2. Compute G(r) using the fitted GeDS model, S(Q).

For the time being, let us assume Qmax = Qmax, though in general Qmax < Qmax:
- Signal in the data prevails up to a certain point; beyond this, only noise remains.

- Sequential (and costly) data collection: cut off at the appropriate (Qnmax for an
optimal experimental design.
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Application to Materials Science Data
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Step 1. Fit F(Q), e.g, with an FGB-GeDS model

FGB-GeDS mboost (competitor)
initial learner w/.2 int. knots + 470 int. knots p/boosting iter.,
1 boosting iter. w/468 int. knots 10,000 boosting iter.
MSE: 0.1401462 MSE: 1.327903
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Application to Materials Science Data
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Step 2. Compute the Fourier transform of gold

Proposition

For the sin() transform,

Qmax
Gr) = 2 /0 F(Q) sin(Qr)dQ

™

of the function F'(Q), approximated by S(Q) of ordern = 2s, s = 1,2, 3, ... we
have

—1)%2(n — 1) = A 9 sin(tr
G(r) ~ % Zgi (tion _ti)zm#’
=1 i=t JI (t; — )
1%

wherer € R, p =k +n; él 1 =1,...,pare the GeDS regression coefficients.
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Step size of ris 0.01
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