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1. Geometrically Designed Splines (GeDS)

Free-knot spline regression technique based on a residual-driven (locally-adaptive)
knot insertion scheme that produces an initial piecewise linear spline fit, over
which smoother higher order spline fits are subsequently built (Kaishev et al., 2016,
Dimitrova et al., 2023).
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% GeD spline methodology is extended further by:

1. GAM-GeDS: encompassing Generalized Additive Models (GAM), thereby making GeDS highly
multivariate.

2. FGB-GeDS: incorporating Functional Gradient Boosting (FGB), improving the construction of
the underlying spline regression model.
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= Applications in highly multivariate contexts: Al (e.g., image
recognition/processing); robotics (e.g. motion planning for humanoid robots).

= Implemented in the R package GeDS, available from CRAN:
https://cran.r-project.org/package=GeDS.

GeD Spline Regression

GeDS method unfolds into two stages:

= STAGE A constructs a least squares (LS) linear spline fit to the data.

= Starting with a straight-line, LS fit, which is then sequentially “broken” by iteratively introducing
knots at those points "where the fit deviates most from the underlying functional shape
determined by the data”, based on a measure defined by residuals.

= STAGE B builds smoother higher order spline fits using Schoenberg’s variation
diminishing spline (VDS) approximation, based on the linear fit from Stage A.

= For each higher spline order (quadratic, cubic, ...), compute the corresponding averaging knot
location and re-estimate the spline coefficients by LS.

Properties of GeDS estimated knots and regression coefficients:

= Knots possess Schoenberg variation diminishing optimality.

= Asymptotic normality of estimators in the case of normal noise, allowing for the
construction of pointwise asymptotic confidence intervals.

= Asymptotic conditions on the rate of growth of the knots for negligible
bias/variance ratio of the GeDS estimators.

2. Generalized Additive Models with GeD Splines

GAM with GeD Splines: Local-scoring algorithm using GeD splines as the
function smoothers, f;, at each backfitting iteration.

Example (Gu and Wahba, 1991):
— 2 X si 2 2251(10(1 — 29))° + 10(1025)%(1 — 29)"
f(x) =2 xsin(m X @) +exp(221) +0.225 (10(1 — 29)) + 0(1029)°(1 — x9)
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In Example 1, we fit y = f(x) + ¢ € ~ A4(0,0?), including a noise predictor, x3. In
Example 2 we replace f(xy) by a factor variable zy with 4 levels: 2.1 includes the noise
predictor x3, 2.2 deletes it. For all the examples, xg, x1, x2, x3 ~ Uniform(0, 1).
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GAM-GeDS (partial) fits + MSE boxplots

Cubic GAM-GeDS partial fits for example 1:

fo(Xo) = 2sin(mxo) f1(x;) = @ fa(x2) = 0.23"(10(1 = x2))® + 10(10%2) (1 —x2) *°
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MSE boxplots w.r.t. f(x), examples 1, 2.1 & 2.2:
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3. Functional Gradient Boosting with GeD Splines

Application: Compute the Fourier Transform of Gold (Au)

Given a sample, £ = {F(Q;), Qi}fil, 0< @1 <...<Qny< @max, we are interested in
estimating the Fourier transform (imaginary part):

Qmax
G(r) = g/O F(Q)sin QrdQ.
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Assuming (max IS known, this involves two steps:

Step 1. Estimate F(Q) through a GeDS fit = S(Q) to the sample L.
Step 2. Compute G(r) using the fitted GeDS model, S(Q).

For the time being, let Qmax = @max, though in general Qmax < @max (signal in data
prevails up to a certain point), and needs to be optimally estimated.

Step 1: Estimate F(Q)

NGeDSboost
initial learner w/.2 int. knots +
1 boosting iter. w/468 int. knots
MSE: 0.1401462

mboost (competitor)
470 int. knots p/boosting iter.,
10,000 boosting iter.
MSE: 1.327903

NGeDS
231 knots
MSE: 0.4137057
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Step 2: Compute the Fourier transform G(r)

Deals with major limitations of mainstream Gradient Boosting algorithms:

B “Prone to overfitting”

- FGB-GeDS determines the optimal number of boosting iterations through a
stopping rule based on a ratio of consecutive deviances.

M “Many parameters and unstable performance”

- Strength of the base learners is automatically regulated by the GeDS technique at
each boosting iteration, and flexibly controlled through the GeDS parameters.

B “‘Black-box models”

b Final FGB-GeDS boosted model is expressed as a single spline model, which
simplifies its evaluation and enhances interpretability.
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