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1. Geometrically Designed Splines (GeDS)

Free-knot spline regression technique based on a residual-driven (locally-adaptive)

knot insertion scheme that produces an initial piecewise linear spline fit, over

which smoother higher order spline fits are subsequently built (Kaishev et al., 2016,

Dimitrova et al., 2023).

h GeD spline methodology is extended further by:
1. GAM-GeDS: encompassing Generalized Additive Models (GAM), thereby making GeDS highly

multivariate.

2. FGB-GeDS: incorporating Functional Gradient Boosting (FGB), improving the construction of

the underlying spline regression model.︸ ︷︷ ︸
Applications in highly multivariate contexts: AI (e.g., image

recognition/processing); robotics (e.g. motion planning for humanoid robots).

Implemented in the R package GeDS, available from CRAN:
https://cran.r-project.org/package=GeDS.

GeD Spline Regression

GeDS method unfolds into two stages:

STAGE A constructs a least squares (LS) linear spline fit to the data.
Starting with a straight-line, LS fit, which is then sequentially “broken” by iteratively introducing

knots at those points “where the fit deviates most from the underlying functional shape

determined by the data”, based on a measure defined by residuals.

STAGE B builds smoother higher order spline fits using Schoenberg’s variation

diminishing spline (VDS) approximation, based on the linear fit from Stage A.
For each higher spline order (quadratic, cubic, ...), compute the corresponding averaging knot

location and re-estimate the spline coefficients by LS.

Properties of GeDS estimated knots and regression coefficients:

Knots possess Schoenberg variation diminishing optimality.

Asymptotic normality of estimators in the case of normal noise, allowing for the

construction of pointwise asymptotic confidence intervals.

Asymptotic conditions on the rate of growth of the knots for negligible

bias/variance ratio of the GeDS estimators.

2. Generalized Additive Models with GeD Splines

GAM with GeD Splines: Local-scoring algorithm using GeD splines as the

function smoothers, fj, at each backfitting iteration.

Example (Gu and Wahba, 1991):

f (x) = 2 × sin(π × x0)︸ ︷︷ ︸
f0(x0)

+ exp(2x1)︸ ︷︷ ︸
f1(x1)

+ 0.2x11
2 (10(1 − x2))6 + 10(10x2)3(1 − x2)10︸ ︷︷ ︸

f2(x2)

In Example 1, we fit y = f (x) + ε, ε ∼ N (0, σ2
ε), including a noise predictor, x3. In

Example 2 we replace f (x0) by a factor variable x0 with 4 levels: 2.1 includes the noise

predictor x3, 2.2 deletes it. For all the examples, x0, x1, x2, x3 ∼ Uniform(0, 1).

GAM-GeDS (partial) fits + MSE boxplots

Cubic GAM-GeDS partial fits for example 1:

MSE boxplots w.r.t. f (x), examples 1, 2.1 & 2.2:

3. Functional Gradient Boosting with GeD Splines

Deals with major limitations of mainstream Gradient Boosting algorithms:

“Prone to overfitting”

à FGB-GeDS determines the optimal number of boosting iterations through a

stopping rule based on a ratio of consecutive deviances.

“Many parameters and unstable performance”

à Strength of the base learners is automatically regulated by the GeDS technique at

each boosting iteration, and flexibly controlled through the GeDS parameters.

“Black-box models”

à Final FGB-GeDS boosted model is expressed as a single spline model, which

simplifies its evaluation and enhances interpretability.

Application: Compute the Fourier Transform of Gold (Au)

Given a sample, L = {F (Qi), Qi}N
i=1, 0 < Q1 < ... < QN < Q̃max, we are interested in

estimating the Fourier transform (imaginary part):

G(r) = 2
π

∫ Qmax

0
F (Q) sin QrdQ.

Assuming Qmax is known, this involves two steps:

Step 1. Estimate F (Q) through a GeDS fit ≡ S(Q) to the sample L.
Step 2. Compute G(r) using the fitted GeDS model, S(Q).

For the time being, let Qmax ≡ Q̃max, though in general Qmax < Q̃max (signal in data

prevails up to a certain point), and needs to be optimally estimated.

Step 1: Estimate F (Q)

Step 2: Compute the Fourier transform G(r)
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