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Introduction DDFS estimation Multivariate extension Large sample properties Numerical example:

DDFS (Density & Distribution Func. variable-knot Spline estimation)

Novel non-parametric method for simultaneous variable knot spline estimation
of both the pdf and the cdf of a random variable.

m  Model structure under which, both the pdf and cdf spline models share the
same set of knots + their coefficients are connected.
m |n the literature, non-parametric density estimation methods address the
estimation of solely the pdf. However, pdf and cdf are closely connected.
% |terative approach combining:
1. Constrained maximum likelihood estimation of the spline coefficients.
2. Sequential minimum bias driven estimation of the underlying spline knots,
following the Geometrically Designed Spline (GeDS) methodology (Kaishev et al.,
2016, Dimitrova et al., 2023, Dimitrova et al., 2025).
m%  Competitive alternative to state of the art methods, e.g., kernel, logsplines
(Kooperberg and Stone, 1991), and recent spline-based methods (Cui et al.,
2020, Kirkby et al., 2021) + Large sample properties.
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2. Simultaneous pdf and cdf estimation with variable knot splines
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& The pdf, f(x), is approximated by a spline function, from the space of all
n-th order spline functions, S¢, .,

p
f(@;ten, 0) = 0" Np(z) = > 0;N;n(x), (1)
j=1

where 0 = (61, ..., 0,)T is a vector of non-negative coefficients and N, (x) =
(Nin(2), ..., Npn(2z))T, p = n + k, are normalized B-splines of order n,
defined on the set of non-decreasing knots,

tpn = {ti=...=ty <tny1 <...<tptk <tpikt1=-...=tlonii}t @)

In order for f(x; g, @), to integrate to one and be a valid pdf, then

gjw =1, must hold. 3)

j=1 "
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% For the cdf, F'(x), it is natural to take
F(w;tnt1,0' / flusten; 0 du—ZQ jnt1(z), z<x<T, 4

where
0 = (6;....0,)" Ze b =0 (5)

and Njn41(z),j =1,...,p, are B-splines of order n + 1, on the set of
non-decreasing knots

tk’n+1:{t():tl:...ztn<tn+1<...

<tk <tpgktl = ... =tontk = tondgktt, (6)

with Nj ,,+1(z) supported on [tj, tjynt1], J =1,...,p.
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Introduction DDFS estimation Multivariate extension Large sample propertie Numerical example: applica to risk measuremen
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Univariate pdf/cdf estimation

1. Given a set of knots {tp11, ..., tntk} C thpn C trpi1, we find the
maximum likelihood estimates (MLE) of the parameters, 8, by solving the
optimization problem

N
0 = argmax } log f(Xi;tyn,0), (7)

i=1

subject to the constraints

p

0;>0, j=1,...,p, and » 0,72 =1, )
X n
7=1
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2. For a MLE estimate, é obtained from (7), and estimates, é’, obtained from
(5), find an updated set of knots, tk,n“, such that it minimizes the
Lo-distance between Fy (x) and F'(x; tg n41,0"):

. N2
thn1 = = arg min Z {FN (X;) — F(Xi;tk,n—l-lael)} )

k: n+1

subject to the constraints {t,+1 < ... < tpir} C tpn Ctrnyl.

« Since, k may be large, (9) is in general a highly multivariate optimization
problem, non-linear in ty41, ..., th4k thatis virtually impossible to solve
(see De Boor, 1978, Lindstrom, 1999).

Emilio L. Sdenz Guillén https://emilioluissaenzguillen.github.io/ PARTY 2025 9/48



Introduction DDFS estimation Multivariate extension Large sample propertie Numerical example:
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* Therefore, instead of (9), we sequentially estimate the knots, t,,4+1, . . ., -tk
applying the procedure underpinning Stage A of the Geometrically
Designed Splines (GeDS) (Kaishev et al., 2016 and Dimitrova et al., 2023):

» At each iteration we place a knot, §*, within the cluster that maximizes the
following-bias dominated measure:

w; = pmf+ (1= B j=1,...,u (10)

where m;-, 77;- denote the normalized mean and range values of the j-th cluster of
residuals.
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Iterative estimation process

Step 1. Given ty, ,, find the MLE estimates, é by solving (7).

Step 2. Use 6 and ty. » to compute o, following (5) and then apply (4) to
compute F'(z;t pt1, é’) recalling that, £, ,, 1 is obtained from ¢y, ,,, by
adding the additional end knots, tg = t1, and {9, 4+1+1 = ton+k (cf. (2) and (6)).
Step 3. Compute the residuals

A

pl:FN(XZ)_F(Xlatk,n-‘rlael)’ 1= 177N) ()

that provide information for the discrepancy between the ecdf, Fy(x), and the

A

estimate, F'(Xj; ty n41,0’), of the cdf F.
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On the k-th iteration, if k£ < g, go to Step 4. Otherwise, use the residuals, p;,
i=1,..., N, tocompute the ratio

N2
Y {FN(Xi> — F(Xi;temtts 0’)}
¢ = . (12)

S {Fn (X)) = (Xt gni1,6') )

A

If > @ezit, then exit the iterations with final estimates, f(x; t;—q.n, 6) and
F(x;th—gnt1, é’) If ¢ < Gexit, then go to Step 4.

Step 4. Find a new knot 0*, applying the locally adaptive bias minimizing knot
insertion scheme of Stage A of GeDS, viewing p;, from (11), as the observations
¥i,© = 1,..., N. Update the current set of knots as, £341 n4+1 = tppt1 U™
Set, i < tr11,n+1 and go back to Step 1.
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3. Multivariate extension
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Multivariate extension

» Without loss of generality, for notational simplicity, we will layout the
method for the case of two dimensions.

We now assume, we can approximate the pdf, f (), with a two-dimensional
tensor product spline function, f(x; Tk 5, 0), defined as

f(m; Tk,na 0) = 0T (an (1'15 tl;kl,n1) & an (~752; t2;k27n2)) = (13)
P p2
= Z Z ejlijjhm ($1;t1;k1,n1)Nj27n2 (332;1;2;’@7712)
Jj1=1j2=1

where t1.1, nys 2.k, n, are sets of knots with respect to 1 and o, with k1 and
ks internal knots; p1 = n1 + k1 and p2 = na + ko; Ny, (x1; t1.4,.n,) and
Ny, (xo; tg;kzm), are vectors of B-spline basis functions of order 1 and na,
on the sets of knots ¢1.4, ,, and £a.1,, n,; @ is a vector of spline coefficients.
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Multivariate extension
00000

As in the univariate case, for the spline model of F(m) we take

, T o
F(w;Tk,n+1,9)=/ / J(u,v; Ty p, 0)dudv (14)
—00 J—00
p1 P2 ,
= > > 055N+ (315 By 1) Njpimo 41 (225 By mot1), (15)
ji=1ja=1
where,

! / ! ! / T
0 - (91179127”'7911)27'"79}71172) 3

J1 J2 tiins — tir tising — ti
11+n1 11 Y19+n9 12
J132 Z Z 9“12 (16)
ni n2
i1=110=1
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Introduction DDFS estimation

Multivariate extension Large sample propertie Numerical example:

Multivariate pdf/cdf estimation

1. For fixed numbers of knots, k1, ko and knot locations,

{{tl,n1+17 LI atl,n1+k1} X {t27n2+17 cee at2,n2+k:2}} C Tk,n C Tk,'n,—|—1:
we find the maximum likelihood estimates (MLE) of the parameters, 6, by
solving the optimization problem

N
0 = argmax > lo Xi;:Trn,0), (17)
gm ; g f(Xi; Tn, )

subject to the constraints, 8,5, > 0,71 = 1,...,p1,j2 = 1,...,p2, and:

- - o (tj1+n1 - tjl) (tszrnz - tj2) _
g E 931732 =1. (18)
=1j2=1 " 2
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2. For a MLE estimate, é obtained from (17), and estimates, 8’, obtained from
(16), update the set of knots, Tk n-1 = E1;ky 1 +1 X T2k mo+1-

The optimal location of an additional knot in either, £1.x; 1,41 O £2.ky no+1,
is found, so that a measure of the bias between Fy(x) and

F(x; Tk nt1, 0/) is minimized following the two dimensional
generalization of stage A of GeDS (see Dimitrova et al., 2023).
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Large sample properties
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4. Large sample properties
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Numerical example: \ plica to risk measurement

Introduction DDFS estimatior Multivariate extension Large sample properties
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Asymptotic properties of DDFS

+ Lemma 1. The spline density estimator, f(x; tin, 0) can be expressed as
the following mixture

f@;ten,0) = a1 fr,(x;71) + ...+ apfr, (2;Tp), (19)

where oj = 9]-@ >0,%%_ aj = 1,and where fr,(; 7))

7 =1,...,p, aredensities, with respect to the Lebesgue measure, of the
linear combinations, L, j = 1,...,p of Dirichlet random variables (Lemma
1 follows from (1), (3) and a result due to Ignatov and Kaishev, 1989).

* Theorem. For a fixed set of knots, tk,n, the MLE estimates é are strongly
consistent and asymptotically normal as N — oo (the result of the theorem
follows from Lemma 1 and a result due to Redner and Walker, 1984).
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5. Numerical examples
5.1 Univariate examples
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Test case

Density

Test case

Density

Gaussian N(0,1) Merton’s jump o =0.08\=3u;=-0.01,
diffusion oy =040, =1/4
Student-t ty,v="06 Kou’s double 0 =0.04 X =2pyy =04,
exponential m=3m=>52A=1/4
-
Exponential Exp(A\), A=12>0 Generalized Lexp (7 (1 + k%"i) k) (1+ k=)~ 7x
extreme value k=-0.50and0.5,u=10=02>0
Chi-square Xpk=4,2>0 MixGauss 0.15N(—0.25,1/3) + 0.85N(3.25,1)
Gamma >0k=90=05 Mix1d 0.8x%(3) +0.2N(7,1)
Weibull >0 A=1k=5 MixGauss2 fN(J 1)+ 5 N(S (1/3)%) + & xN(10,(1/9)%)
Log-normal z>0,p=00=1 Bimodal fN (0 ( ) ) + N(5 1)
Nakagami Zﬂﬁ}f;:u] exp (—La?) 2> 0, p=w=2 Separated bimodal SN (-2, (%) )+ IN(2, (%) )
2 2
Kurtotic unimodal 2N (0,1) + IN (0, (%) ) Skewed bimodal IN(,1) + 1N (3, (%) )
Outlier HN©0,1) + N (0, () Trimodal L33 N (80K, (k +1)

Skewed unimodal

Smooth comb

)
5 5k k
S Lt (65 96/2 (32

Strongly skewed

Claw

63 )
IN(0,1)+ T4 5N (% - %

)
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Introduction References

We assess the goodness-of-fit over a regular grid of K evaluation points
Z1, ..., T with uniform spacing Az = x;11 — x;, based on

+ Mean Integrated Squared Error (MISE):
E[/(f(x;N) - f(x))“’dx] ~ Ay (fasN) - f)’

* Roughness, R(f):

K-1 9t o\
RO = [(@) e ~ a0y (FEm =2 £
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MISE boxplots - Gaussian
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MISE boxplots - Chi-square
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Roughness - Gaussian & Chi-square (pdf)

Gaussian, N=100

Numerical examples
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Chi-square, N=100
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Gaussian, N=100

Roughness - Gaussian & Chi-square (cdf)

Numerical examples
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Chi-square, N=100
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Roughness boxplots - Gaussian & Chi-square
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MISE boxplots - Generalized extreme value, Type Il
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MISE boxplots - Mix1d
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N =100

MISE boxplots - Smooth comb
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5. Numerical examples

5.2 Bivariate examples
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tion iate extension sample properties

Numerical examples
C o

Bivariate Gaussian, p = 0.5

bkt = {8 = -3.27, -1.24, -0.68, -0.23, 0.8, 1.37, b = 3.12}
tokynyet = {8 = -3.12, 1.46, -0.41, 0.43, 1.48, b = 3.45}

Fxx, 4 ' ' "” ZZ’

” v(v \‘
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MISE boxplots - Bivariate Gaussian, p = 0.5
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tion iate extension sample properties Numerical examples
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Bivariate Bimodal Mixed Gaussian

tik,n,1=(a =3.74, 4.26, 4.55, 5.18, 5.54, 5.92, 6.39, 6.87, 7.33, b = 8.02}
ok, ={a = 3.48, 4.36, 5,549, 5.9, 6.34, 6.68, 7.14, 7.38, b = 8.14}
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Introduction

Loss data modelling

Proliferation of composite and mixture models proposed for the modelling of
insurance loss data (see Marambakuyana and Shongwe, 2024 for a review).

3\

m# ML estimation often requires large samples to converge (data
availability might be a problem) + involves a high computational
burden:

— many actuarial studies only fit the model once (on the whole
dataset) and perform backtesting on a static forecast (see, e.g.,
Abu Bakar et al., 2015).
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Some frequently considered loss-datasets are:

1. Danish Fire Insurance.

2. Norwegian Fire Insurance Data.

3. US Allocated Loss Adjustment Expenses.

» Assess model reliability via rolling-window back-testing (Basel Ill, EIOPA):
Proportion of Failures (Kupiec et al., 1995), Conditional Coverage (Christoffersen,
1998), Dynamic Quantile (Engle and and, 2004).
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Table 1: Backtesting Statistics for VaR Models (data = danish)

Viol. rate TVaRMAE UC_LRp CCLRp DQ_LRp

a=0.05
DDFS 0.0500 0.2929 0.9923  0.6001 0.0125
kernel 0.0513 0.5360 0.7796  0.2529 0.0013

logspline 0.0513 19.4176  0.7796  0.4360  0.8047

a = 0.025
DDFS 0.0250 1.8166  0.9946 0.1776  0.0280
kernel 0.0259 25763  0.7931 0.0623 0.0001

logspline 0.0245 28.6836  0.8867 0.4458  0.1013

a=0.01
DDFS 0.0103 10.8978  0.9024 0.7819 0.0327
kernel 0.0116 5.7749  0.4586  0.5600 0.0006

logspline 0.0120 39.4870  0.3462 0.4617 0.0256
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Norwegian Fire Insurance Data
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Viol. rate TVaRMAE UC_LRp CCLRp DQ_LRp
a=0.05
DDFS 0.0549  5728.4529  0.0459 0.0000 0.2577
kernel 0.0693 224.7367  0.0000 0.0000  0.2141
logspline 0.0687 14843.5071 0.0000 0.0000  0.2126
a = 0.025
DDFS 0.0251 4710.8357  0.9732 0.0000  0.0206
kernel 0.0351 72.1034  0.0000 0.0000  0.0078
logspline 0.0356 22755.3814  0.0000 0.0000  0.0074
a=0.01
DDFS 0.0101 8140.1647  0.8951 0.0000  0.0001
kernel 0.0156 711.3990 0.0000 0.0000  0.0000
logspline 0.0147 39397.0583  0.0001  0.0000  0.0000

https://emilioluissaenzguillen.github.io/

An application to risk measurement
000000@00

PARTY 2025

References

45/48



ple propertie

US Allocated Loss Adjustment Expenses

VaR Backtesting: Actual Claims vs. VaR Forecast

An application to risk measurement
000000000

0
8
4 ’ DDFS kermel
& Actual Claims VaR, 7oy VaR*e,
DDFS kemel
""" VaR 5025 VaR 20025
ogspi
2 VaR. 5o
8 !
- logspline
& VaR, 25025
5 w
2 %
s 8
]
S
£
0
E 2
£ g4
s &
0
8
e
2
s
8
S 4
3
8

Emilio L. Sdenz Guillén https://emilioluissaenzguillen.github.io/

PARTY 2025

46/48



Introduction DDFS estirr

ation Multivariate extension ge sample propertie Numeric

An application to risk measurement References
000000008 o

Table 3: Backtesting Statistics for VaR Models (data = lossalae)

Viol. rate TVaRMAE UCLRp CCLRp DQ_LRp

a=0.05
DDFS 0.0520 59249510 0.7471 0.0000 0.8879
kernel 0.0800 6318.5262 0.0000 0.0000 0.8910

logspline 0.0720  77978.2778  0.0008  0.0000  0.8230

a = 0.025
DDFS 0.0256 13695.9417  0.8923  0.0000 0.9663
kernel 0.0448 3869.2244  0.0001  0.0000  0.4172

logspline 0.0448  98390.4464  0.00017  0.0000  0.4292

a=0.01
DDFS 0.0112 37127.2636  0.6757  0.0000 0.6161
kernel 0.0224 15161.8945  0.0002  0.0000 0.2674

logspline 0.0272 120016.2647  0.0000  0.0000 0.0133
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