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DDFS (Density & Distribution Func. variable-knot Spline estimation)
Novel non-parametric method for simultaneous variable knot spline estimation
of both the pdf and the cdf of a random variable.

à Model structure under which, both the pdf and cdf spline models share the
same set of knots + their coefficients are connected.

à In the literature, non-parametric density estimation methods address the
estimation of solely the pdf. However, pdf and cdf are closely connected.

à Iterative approach combining:
1. Constrained maximum likelihood estimation of the spline coefficients.
2. Sequential minimum bias driven estimation of the underlying spline knots,

following the Geometrically Designed Spline (GeDS) methodology (Kaishev et al.,
2016, Dimitrova et al., 2023, Dimitrova et al., 2025).

à Competitive alternative to state of the art methods, e.g., kernel, logsplines
(Kooperberg and Stone, 1991), and recent spline-based methods (Cui et al.,
2020, Kirkby et al., 2021) + Large sample properties.
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h The pdf, f(x), is approximated by a spline function, from the space of all
n-th order spline functions, Stk,n

,

f(x; tk,n, θ) = θT Nn(x) =
p∑

j=1
θjNj,n(x), (1)

where θ = (θ1, ..., θp)T is a vector of non-negative coefficients and Nn(x) =
(N1,n(x), . . . , Np,n(x))T , p = n + k, are normalized B-splines of order n,
defined on the set of non-decreasing knots,

tk,n = {t1 = . . . = tn < tn+1 < . . . < tn+k < tn+k+1 = . . . = t2n+k}. (2)

In order for f(x; tk,n, θ), to integrate to one and be a valid pdf, then

p∑
j=1

θj
(tj+n − tj)

n
= 1, must hold. (3)
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h For the cdf, F (x), it is natural to take

F (x; tk,n+1, θ′) =
∫ x

x

f(u; tk,n; θ)du =
p∑

j=1
θ′

jNj,n+1(x), x ≤ x ≤ x, (4)

where

θ′ =
(
θ′

1, ..., θ′
p

)T
, θ′

j =
j∑

i=1
θi

ti+n − ti

n
, (5)

and Nj,n+1(x), j = 1, . . . , p, are B-splines of order n + 1, on the set of
non-decreasing knots

tk,n+1 = {t0 = t1 = . . . = tn < tn+1 < . . .

. . . < tn+k < tn+k+1 = . . . = t2n+k = t2n+k+1, } (6)

with Nj,n+1(x) supported on [tj , tj+n+1], j = 1, . . . , p.
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Univariate pdf/cdf estimation

1. Given a set of knots {tn+1, . . . , tn+k} ⊂ tk,n ⊂ tk,n+1, we find the
maximum likelihood estimates (MLE) of the parameters, θ, by solving the
optimization problem

θ̂ = arg max
θ

N∑
i=1

log f(Xi; tk,n, θ), (7)

subject to the constraints

θj ≥ 0, j = 1, . . . , p, and
p∑

j=1
θj

tj+n − tj

n
= 1. (8)
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2. For a MLE estimate, θ̂, obtained from (7), and estimates, θ̂′, obtained from
(5), find an updated set of knots, t̂k,n+1, such that it minimizes the
L2-distance between FN (x) and F (x; tk,n+1, θ̂′):

t̂k,n+1 = arg min
tk,n+1

N∑
i=1

{
FN (Xi)− F (Xi; tk,n+1, θ̂′)

}2
(9)

subject to the constraints {tn+1 < . . . < tn+k} ⊂ tk,n ⊂ tk,n+1.︸ ︷︷ ︸
• Since, k may be large, (9) is in general a highly multivariate optimization
problem, non-linear in tn+1, . . . , tn+k , that is virtually impossible to solve
(see De Boor, 1978, Lindstrom, 1999).
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• Therefore, instead of (9), we sequentially estimate the knots, tn+1, . . . , tn+k ,
applying the procedure underpinning Stage A of the Geometrically
Designed Splines (GeDS) (Kaishev et al., 2016 and Dimitrova et al., 2023):

ä At each iteration we place a knot, δ∗, within the cluster that maximizes the
following-bias dominated measure:

wj = βm′
j + (1− β)η′

j , j = 1, ..., u (10)

where m′
j , η

′
j denote the normalized mean and range values of the j-th cluster of

residuals.
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Iterative estimation process

Step 1. Given tk,n find the MLE estimates, θ̂, by solving (7).
Step 2. Use θ̂ and tk,n to compute θ̂′, following (5) and then apply (4) to
compute F (x; tk,n+1, θ̂′), recalling that, tk,n+1 is obtained from tk,n, by
adding the additional end knots, t0 = t1, and t2n+k+1 = t2n+k , (cf. (2) and (6)).
Step 3. Compute the residuals

ρi = FN (Xi)− F (Xi; tk,n+1, θ̂′), i = 1, ..., N, (11)

that provide information for the discrepancy between the ecdf, FN (x), and the
estimate, F (Xi; tk,n+1, θ̂′), of the cdf F .
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On the k-th iteration, if k ≤ q, go to Step 4. Otherwise, use the residuals, ρi,
i = 1, . . . , N , to compute the ratio

ϕ =
∑N

i=1

{
FN (Xi)− F (Xi; tk,n+1, θ̂′)

}2

∑N
i=1

{
FN (Xi)− F (Xi; tk−q,n+1, θ̂′)

}2 . (12)

If ϕ ≥ ϕexit, then exit the iterations with final estimates, f(x; tk−q,n, θ̂) and
F (x; tk−q,n+1, θ̂′). If ϕ < ϕexit, then go to Step 4.
Step 4. Find a new knot δ∗, applying the locally adaptive bias minimizing knot
insertion scheme of Stage A of GeDS, viewing ρi, from (11), as the observations
yi, i = 1, . . . , N . Update the current set of knots as, tk+1,n+1 = tk,n+1 ∪ δ∗.
Set, tk,n ← tk+1,n+1 and go back to Step 1.
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Multivariate extension

ä Without loss of generality, for notational simplicity, we will layout the
method for the case of two dimensions.

We now assume, we can approximate the pdf, f(x), with a two-dimensional
tensor product spline function, f(x; Tk,n, θ), defined as

f(x; Tk,n, θ) = θT (Nn1(x1; t1;k1,n1)⊗Nn2(x2; t2;k2,n2)) = (13)

=
p1∑

j1=1

p2∑
j2=1

θj1j2Nj1,n1(x1; t1;k1,n1)Nj2,n2(x2; t2;k2,n2)

where t1;k1,n1 , t2;k2,n2 are sets of knots with respect to x1 and x2, with k1 and
k2 internal knots; p1 = n1 + k1 and p2 = n2 + k2; Nn1(x1; t1;k1,n1) and
Nn2(x2; t2;k2,n2), are vectors of B-spline basis functions of order n1 and n2,
on the sets of knots t1;k1,n1 and t2;k2,n2 ; θ is a vector of spline coefficients.
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As in the univariate case, for the spline model of F (x), we take

F (x; Tk,n+1, θ
′) =

∫ x1

−∞

∫ x2

−∞
f(u, v; Tk,n, θ)dudv (14)

=
p1∑

j1=1

p2∑
j2=1

θ
′
j1j2Nj1,n1+1(x1; t1;k1,n1+1)Nj2,n2+1(x2; t2;k2,n2+1), (15)

where,

θ
′ =

(
θ

′
11, θ

′
12, ..., θ

′
1p2 , . . . , θ

′
p1p2

)T
,

θ
′
j1j2 =

j1∑
i1=1

j2∑
i2=1

θi1i2
ti1+n1 − ti1

n1

ti2+n2 − ti2

n2
(16)
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Multivariate pdf/cdf estimation

1. For fixed numbers of knots, k1, k2 and knot locations,
{{t1,n1+1, . . . , t1,n1+k1} × {t2,n2+1, . . . , t2,n2+k2}} ⊂ Tk,n ⊂ Tk,n+1,
we find the maximum likelihood estimates (MLE) of the parameters, θ, by
solving the optimization problem

θ̂ = arg max
θ

N∑
i=1

log f(Xi; Tk,n, θ), (17)

subject to the constraints, θj1j2 ≥ 0, j1 = 1, . . . , p1, j2 = 1, . . . , p2, and:

p1∑
j1=1

p2∑
j2=1

θj1,j2
(tj1+n1 − tj1)

n1

(tj2+n2 − tj2)
n2

= 1. (18)
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2. For a MLE estimate, θ̂, obtained from (17), and estimates, θ̂′ , obtained from
(16), update the set of knots, T̂k,n+1 = t1;k1,n1+1 × t2;k2,n2+1.︸ ︷︷ ︸
The optimal location of an additional knot in either, t1;k1,n1+1 or t2;k2,n2+1,
is found, so that a measure of the bias between FN (x) and
F (x; Tk,n+1, θ

′) is minimized following the two dimensional
generalization of stage A of GeDS (see Dimitrova et al., 2023).
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Asymptotic properties of DDFS

• Lemma 1. The spline density estimator, f(x; tk,n, θ) can be expressed as
the following mixture

f(x; tk,n, θ) = α1fL1(x; τ1) + . . . + αpfLp(x; τp), (19)

where αj = θj
tj+n−tj

n ≥ 0,
∑p

j=1 αj = 1, and where fLj (x; τj)
j = 1, . . . , p, are densities, with respect to the Lebesgue measure, of the
linear combinations, Lj , j = 1, . . . , p of Dirichlet random variables (Lemma
1 follows from (1), (3) and a result due to Ignatov and Kaishev, 1989).

• Theorem. For a fixed set of knots, tk,n, the MLE estimates θ̂ are strongly
consistent and asymptotically normal as N →∞ (the result of the theorem
follows from Lemma 1 and a result due to Redner and Walker, 1984).
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Test case Density Test case Density

Gaussian N(0, 1) Merton’s jump σ = 0.08, λ = 3 µJ = −0.01,

diffusion σJ = 0.4, ∆t = 1/4

Student-t tv , v = 6 Kou’s double σ = 0.04, λ = 2 pup = 0.4,

exponential η1 = 3, η2 = 5, ∆t = 1/4

Exponential Exp(λ), λ = 1, x ≥ 0 Generalized 1
σ exp

(
−

(
1 + k x−µ

σ

)− 1
k

)
(1 + k x−µ

σ )−1− 1
k

extreme value k = −0.5, 0 and 0.5, µ = 1, σ = 0, x > 0

Chi-square χ2
k , k = 4, x > 0 MixGauss 0.15N(−0.25, 1/3) + 0.85N(3.25, 1)

Gamma x ≥ 0, k = 9, θ = 0.5 Mix1d 0.8χ2(3) + 0.2N(7, 1)

Weibull x ≥ 0, λ = 1, k = 5 MixGauss2 5
6N(3, 1) + 5

36N(8, (1/3)2) + 1
36N(10, (1/9)2)

Log-normal x > 0, µ = 0, σ = 1 Bimodal 1
2N

(
0,

(
1
10

)2
)

+ 1
2N (5, 1)

Nakagami 2µµx2µ−1

Γ(µ)ωµ exp
(
−µ

ω x2)
, x > 0, µ = ω = 2 Separated bimodal 1

2N(−2,
(

1
2

)2
) + 1

2N(2,
(

1
2

)2
)

Kurtotic unimodal 2
3N (0, 1) + 1

3N

(
0,

(
1
10

)2
)

Skewed bimodal 3
4N(0, 1) + 1

4N(3
2 ,

(
1
3

)2
)

Outlier 1
10N (0, 1) + 9

10N

(
0,

(
1
10

)2
)

Trimodal 1
3

∑2
k=0 N

(
80k, (k + 1)4)

Skewed unimodal 1
5N (0, 1) + 1

5N(1
2 ,

(
2
3

)2
) + 3

5N

(
13
12 ,

(
5
9

)2
)

Smooth comb
∑5

k=0
25−k

63 N

(
65−96/2k

21 ,
(

32/63
2k

)2
)

Strongly skewed
∑7

k=0
1
8N

(
3

((
2
3

)k
− 1

)
,
(

2
3

)2k
)

Claw 1
2N (0, 1) +

∑4
k=0

1
10N

(
k
2 − 1,

(
1
10

)2
)
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We assess the goodness-of-fit over a regular grid of K evaluation points
x1, . . . , xK with uniform spacing ∆x = xi+1 − xi, based on

• Mean Integrated Squared Error (MISE):

E
[∫ (

f̂(x; N)− f(x)
)2

dx

]
≈ ∆x

K∑
i=1

(
f̂(xi; N)− f(xi)

)2

• Roughness, R(f):

R(f) =
∫ (

f ′′(x)
)2

dx ≈ ∆x
K−1∑
i=2

(
f(xi+1)− 2f(xi) + f(xi−1)

(∆x)2

)2
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MISE boxplots - Gaussian
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MISE boxplots - Chi-square
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Roughness - Gaussian & Chi-square (pdf)
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Roughness - Gaussian & Chi-square (cdf)
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Roughness boxplots - Gaussian & Chi-square
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MISE boxplots - Generalized extreme value, Type III
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MISE boxplots - Mix1d
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MISE boxplots - Smooth comb
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Bivariate Gaussian, ρ = 0.5
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MISE boxplots - Bivariate Gaussian, ρ = 0.5
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Bivariate Bimodal Mixed Gaussian
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Bivariate Bimodal Mixed Gaussian
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Loss data modelling

Proliferation of composite and mixture models proposed for the modelling of
insurance loss data (see Marambakuyana and Shongwe, 2024 for a review).

à ML estimation often requires large samples to converge (data
availability might be a problem) + involves a high computational
burden:
−→many actuarial studies only fit the model once (on the whole
dataset) and perform backtesting on a static forecast (see, e.g.,
Abu Bakar et al., 2015).
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Some frequently considered loss-datasets are:

1. Danish Fire Insurance.

2. Norwegian Fire Insurance Data.

3. US Allocated Loss Adjustment Expenses.

︸ ︷︷ ︸
ä Assess model reliability via rolling-window back-testing (Basel III, EIOPA):
Proportion of Failures (Kupiec et al., 1995), Conditional Coverage (Christoffersen,
1998), Dynamic Quantile (Engle and and, 2004).
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Danish Fire Insurance
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Table 1: Backtesting Statistics for VaR Models (data = danish)

Viol. rate TVaR MAE UC_LRp CC_LRp DQ_LRp

α = 0.05

DDFS 0.0500 0.2929 0.9923 0.6001 0.0125

kernel 0.0513 0.5360 0.7796 0.2529 0.0013

logspline 0.0513 19.4176 0.7796 0.4360 0.8047

α = 0.025
DDFS 0.0250 1.8166 0.9946 0.1776 0.0280

kernel 0.0259 2.5763 0.7931 0.0623 0.0001

logspline 0.0245 28.6836 0.8867 0.4458 0.1013

α = 0.01
DDFS 0.0103 10.8978 0.9024 0.7819 0.0327

kernel 0.0116 5.7749 0.4586 0.5600 0.0006

logspline 0.0120 39.4870 0.3462 0.4617 0.0256
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Norwegian Fire Insurance Data
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Table 2: Backtesting Statistics for VaR Models (data = norwegian)

Viol. rate TVaR MAE UC_LRp CC_LRp DQ_LRp

α = 0.05

DDFS 0.0549 5728.4529 0.0459 0.0000 0.2577

kernel 0.0693 224.7367 0.0000 0.0000 0.2141

logspline 0.0687 14843.5071 0.0000 0.0000 0.2126

α = 0.025
DDFS 0.0251 4710.8357 0.9732 0.0000 0.0206

kernel 0.0351 72.1034 0.0000 0.0000 0.0078

logspline 0.0356 22755.3814 0.0000 0.0000 0.0074

α = 0.01
DDFS 0.0101 8140.1647 0.8951 0.0000 0.0001

kernel 0.0156 711.3990 0.0000 0.0000 0.0000

logspline 0.0147 39397.0583 0.0001 0.0000 0.0000
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Table 3: Backtesting Statistics for VaR Models (data = lossalae)

Viol. rate TVaR MAE UC_LRp CC_LRp DQ_LRp

α = 0.05

DDFS 0.0520 5924.9510 0.7471 0.0000 0.8879

kernel 0.0800 6318.5262 0.0000 0.0000 0.8910

logspline 0.0720 77978.2778 0.0008 0.0000 0.8230

α = 0.025
DDFS 0.0256 13695.9417 0.8923 0.0000 0.9663

kernel 0.0448 3869.2244 0.0001 0.0000 0.4172

logspline 0.0448 98390.4464 0.0001 0.0000 0.4292

α = 0.01
DDFS 0.0112 37127.2636 0.6757 0.0000 0.6161

kernel 0.0224 15161.8945 0.0002 0.0000 0.2674

logspline 0.0272 120016.2647 0.0000 0.0000 0.0133
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