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Introduction

DDFS estimation Large for risk measurement

DDFS (Density & Distribution Func. variable-knot Spline estimation)

Novel non-parametric method for simultaneous variable knot spline estimation
of both the pdf and the cdf of a random variable.

(1) Inthe literature, non-parametric density estimation methods address the
estimation of solely the pdf. However, pdf and cdf are closely connected.
(2) Model structure under which, both the pdf and cdf spline models share the
same set of knots + their coefficients are connected.
(3 Iterative approach combining:
- Constrained maximum likelihood estimation of the spline coefficients.
- Sequential minimum bias driven estimation of the underlying spline knots,
following the Geometrically Designed Spline (GeDS) methodology (Kaishev et al.,
2016, Dimitrova et al., 2023, Dimitrova et al., 2025).
() Competitive alternative to state of the art methods, e.g., kernel, logsplines
(Kooperberg and Stone, 1991), and recent spline-based methods (Cui et al.,
2020, Kirkby et al., 2021) + Large sample properties.
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2. Simultaneous pdf and cdf estimation with variable knot splines
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% The pdf, f(x), is approximated by a spline function, from the space of all
n-th order spline functions, S¢, .,

p
f(@;ten, 0) = 0" Np(z) = > 0;N;n(x), (1)
j=1

where 0 = (61, ..., 0,)T is a vector of non-negative coefficients and N, (x) =
(Nin(2), ..., Npn(2z))T, p = n + k, are normalized B-splines of order n,
defined on the set of non-decreasing knots,

tpn = {ti=...=ty <tny1 <...<tptk <tpikt1=-...=tlonii}t @)

In order for f(x; g, @), to integrate to one and be a valid pdf, then

gjw =1, must hold. 3)
‘ n
J=1

Emilio L. Sdenz Guillén https://emilioluissaenzguillen.github.io/ IME 2025

6/40



Introduction DDFS estimation Large sample propertie ca for risk measuremer
00 00800000000 000000000000 00

¢ For the cdf, F'(x), itis natural to take
F(w;tnt1,0' / flusten; 0 du—ZQ jnt1(z), z<x<T, 4

where
0 = (6;....0,)" Ze b =0 (5)

and Njn41(z),j =1,...,p, are B-splines of order n + 1, on the set of
non-decreasing knots

tk’n+1:{t():tl:...ztn<tn+1<...

<tk <tpgktl = ... =tontk = tondgktt, (6)

with Nj ,,+1(z) supported on [tj, tjynt1], J =1,...,p.
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Univariate pdf/cdf estimation

1. Given a set of knots {tn11, ..., ik} C thpn C tkpt1, we find the ML
estimates of the parameters, 8, by solving the optimization problem

N
0 = arg mgxglog F(Xi; thn, 6), @)
subject to the constraints
0;,>0, j=1 and ie-tﬁ”_t"—l ()
=Y J=4L..D j:13 n -
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2. For a ML estimate é obtained from (7), and estimates é’, obtained from (5),
find an updated set of knots, ¢}, 5,1, such that it minimizes the Lo-distance
between Fy(z) and F'(x;ty 41, 6'):

. N2
thn1 = = arg min Z {FN (X;) — F(Xi;tk,n—l-lael)} )

k: n+1

subject to the constraints {t,+1 < ... < tpir} C tpn Ctrnyl.

ws Since, k may be large, (9) is in general a highly multivariate optimization
problem, non-linear in ty41, ..., th4k thatis virtually impossible to solve
(see, e.g., De Boor, 1978 and Lindstrom, 1999).
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Instead of (9), we sequentially estimate the knots, ¢,,4+1, . . . , T4k, applying the
procedure underpinning Stage A of the Geometrically Designed Splines
(GeDS) (Kaishev et al., 2016 and Dimitrova et al., 2023):

» At each iteration we place a knot, 6, within the cluster that maximizes the
following-bias dominated measure:

wj:ﬁm;-—l-(l—ﬁ)??;aj:lw-v“ (10)

where m; 773 denote the normalized mean and range values of the j-th
cluster of residuals.
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Iterative estimation process

Step 1. Given t;, ,,, find the ML estimates, 0, of f(x;tpn, 0).
Step 2. Use 0 and t).,, to compute 6’, and then compute F'(z; ) 541, é’)
recalling that, ¢ 5,41 is obtained from £, ,,, by adding the additional end knots,

to = t1, and toptk+1 = ton+k-
Step 3. Compute the residuals

A

p’i:FN(Xi)iF(X’i;tk,n-‘rlael)? 7::17"'7N’ (11

that provide information for the discrepancy between the ecdf, Fy(x), and the

A

estimate, F'(Xj; ty n41,0’), of the cdf F.
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On the k-th iteration, if k£ < g, go to Step 4. Otherwise, use the residuals, p;,
i=1,..., N, tocompute the ratio

N2
Y {FN(Xi> — F(Xi;temtts 0’)}
¢ = . (12)

S {Fn (X)) = (Xt gni1,6') )

A

If > @ezit, then exit the iterations with final estimates, f(x; t;—q.n, 6) and

F(x;th—gnt1, é’) If ¢ < Gexit, then go to Step 4.

Step 4. Find a new knot 0*, applying the locally adaptive bias minimizing knot
insertion scheme of Stage A of GeDS, viewing p;, from (11), as the observations
yi,i: 1,...,N.

Update the current set of knots as, tj41,n+1 = tknt1 U O™, Set,

t n < g1 ny1 and go back to Step 1.
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3. Large sample properties
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Asymptotic properties of DDFS

Lemma. The spline density estimator, f(z;tj ,, @) can be expressed as the
following mixture

J(@5ty0,0) = a1 fr, (x37m1) + . 4 apfr, (7)), (13)

where a; = @W >0, Z?Zl a;j = 1,and where fr_(x;T;)

7 =1,...,p, are densities, with respect to the Lebesgue measure, of the linear
combinations, Lj, j = 1,..., p of Dirichlet random variables (follows from (1),
(3) and a result due to Ignatov and Kaishev, 1989).

Theorem. For a fixed set of knots, ¢, ,,, the ML estimates 0 are strongly
consistent and asymptotically normal as N — oo (the result of the theorem
follows from the Lemma above and a result due to Redner and Walker, 1984).
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4. Numerical examples
4.1 Univariate examples
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Test case

Density

Test case

Density

Skewed unimodal

Smooth comb

Gaussian N(0,1) Merton’s jump o =0.08\=3u;=-0.01,
diffusion oy =040, =1/4
Student-t ty,v="06 Kou’s double 0 =0.04 X =2pyy =04,
exponential m=3m=>52A=1/4
-
Exponential Exp(A\), A=12>0 Generalized Lexp (7 (1 + k%"i) k) (1+ k=)~ 7x
extreme value k=-0.50and0.5,u=10=02>0
Chi-square Xpk=4,2>0 MixGauss 0.15N(—0.25,1/3) + 0.85N(3.25,1)
Gamma >0k=90=05 Mix1d 0.8x%(3) +0.2N(7,1)
Weibull >0 A=1k=5 MixGauss2 fN(J 1)+ 5 N(S (1/3)%) + & xN(10,(1/9)%)
Log-normal z>0,p=00=1 Bimodal fN (0 ( ) ) + N(5 1)
Nakagami Zﬂﬁ}f;:u] exp (—La?) 2> 0, p=w=2 Separated bimodal SN (-2, (%) )+ IN(2, (%) )
Kurtotic unimodal 2N 0,1) + iN (0 (i)Q) Skewed bimodal 3N(0,1) + IN( (l)Q)
3 »\10 Vs V(g3
2
Outlier HN©0,1) + N (0, () ) Trimodal L33 N (80K, (k + 1)*)
23 7y 2t (et 2 (32
WG.(3) T N (S (3
3

Strongly skewed

Claw

63 )
IN(0,1)+ T4 5N (% - %

)
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Introduction

We assess the goodness-of-fit over a regular grid of K evaluation points
x1, ..., T with uniform spacing Az = x;11 — x;, based on:

+ Mean Integrated Squared Error (MISE)
E[/(f(x;N) - f(x))“’dx] ~ Ay (faN) - f)’

* Roughness, R(f)

R = [(7"@) o ~ A A
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MISE boxplots - Generalized Extreme Value, Type | (Gumbel)
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MISE boxplots - Generalized Extreme Value, Type lll (Weibull)
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Numerical examples
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Roughness - Generalized Extreme Value, Type | and Il (pdf)

GEV Type IIl, N=100
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Roughness - Generalized Extreme Value, Type | and Il (cdf)

GEV Type I, N=100 GEV Type lll, N=100
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4. Numerical examples

4.2 Bivariate examples
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Bivariate Gaussian, p = 0.5

bkt = {8 = -3.27, -1.24, -0.68, -0.23, 0.8, 1.37, b = 3.12}
tokynyet = {8 = -3.12, 1.46, -0.41, 0.43, 1.48, b = 3.45}

Fxix, £ I . ’IIIZZ.

” v(v \‘
/I', Awé’"’ \\\‘

"0 W‘"‘ " ‘\‘R\\
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MISE boxplots - Bivariate Gaussian, p = 0.5
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Bivariate Bimodal Mixed Gaussian

tik,n,1=(a =3.74, 4.26, 4.55, 5.18, 5.54, 5.92, 6.39, 6.87, 7.33, b = 8.02}
ok, ={a = 3.48, 4.36, 5,549, 5.9, 6.34, 6.68, 7.14, 7.38, b = 8.14}

AL KOO /

{/ ')“7”“‘“ ! lihley,
A o
""Iml:f%f’“
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Bivariate Bimodal Mixed Gaussian
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An application for risk measurement
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5. An application for risk measurement
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Loss data modelling

Proliferation of composite and mixture (parametric) models proposed for the
modelling of insurance loss data (Marambakuyana and Shongwe, 2024).

5

s Estimation often requires large samples to converge (data
availability might be a problem) + high computational burden:
— many actuarial studies only fit the model once (on the whole
dataset) and perform backtesting on a static forecast (see, e.g.,
Abu Bakar et al., 2015);

X rolling-window historical simulation backtesting.

32/40
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Some frequently considered loss-datasets are:
1. Danish Fire Insurance.
2. Norwegian Fire Insurance Data.

3. US Allocated Loss Adjustment Expenses.

» Assess model reliability via rolling window back-testing (Basel IlI, EIOPA):
Proportion of Failures (Kupiec, 1995), Conditional Coverage (Christoffersen, 1998),
Dynamic Quantile (Engle and and, 2004).

Emilio L. Sdenz Guillén https://emilioluissaenzguillen.github.io/ IME 2025

33/40



Danish Fire Insurance

VaR Backtesting: Actual Claims vs. VaR Forecast

150

i
vaRlogsp ine

'a=0.975

lognormal
VaR 2975

Claim Amount (DKK)
100

50
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Table 1: Backtesting statistics for VaR models (data = danish).

arge sample propertie

Numerical example:

An application for risk measurement
[e]e]e]e] Jolelele]

a=0.975 a=0.99

Viol. rate uc CcC DQ Viol. rate ucC CcC DQ
ddfs 0.0250 0.9946 0.1776 0.0244 0.0103 0.9024 0.7819 0.0349
kernel 0.0259 0.7931 0.0623 0.0001 0.0116 0.4586 0.5600 0.0006
logspline 0.0245 0.8867 0.4458 0.1013 0.0120 0.3462 0.4617 0.0256
lognormal 0.0531 0.0000 0.0000 0.0000 0.0397 0.0000 0.0000 0.0000
gamma 0.0437 0.0000 0.0000 0.0000 0.0361 0.0000 0.0000 0.0000
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Norwegian Fire Insurance Data

VaR Backtesting: Actual Claims vs. VaR Forecast
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Table 2: Backtesting statistics for VaR models (data = norwegian).

a=0.975 a =0.99
Viol. rate uc CcC DQ Viol. rate ucC CcC DQ
ddfs 0.0265 0.3816 0.0000 0.0206 0.0100 0.9832 0.0000 0.0001
kernel 0.0351 0.0000 0.0000 0.0078 0.0156 0.0000 0.0000 0.0000

logspline 0.0356 0.0000 0.0000 0.0074 0.0147 0.0001 0.0000 0.0000
lognormal 0.0583 0.0000 0.0000 0.0032 0.0390 0.0000 0.0000 0.0000
gamma 0.0466 0.0000 0.0000 0.0048 0.0336 0.0000 0.0000 0.0000
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US Allocated Loss Adjustment Expenses

VaR Backtesting: Actual Claims vs. VaR Forecast

An application for risk measurement
000000000
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Table 3: Backtesting statistics for VaR models (data = lossalae).

a=0.975 a=0.99
Viol. rate ucC CcC DQ Viol. rate uc CcC DQ
ddfs 0.0256 0.8923 0.0000 0.9663 0.0112 0.6757 0.0000 0.6161
kernel 0.0448 0.0001 0.0000 0.4172 0.0224 0.0002 0.0000 0.2674
logspline 0.0448 0.0001 0.0000 0.4292 0.0272  0.0000 0.0000 0.0133
lognormal 0.0200 0.2410 0.0218 = 0.9555 0.0072 0.2950 0.5413 0.6525
gamma 0.0488 0.0000 0.0000 0.4018 0.0360 0.0000 0.0000 0.0040
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