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DDFS (Density & Distribution Func. variable-knot Spline estimation)
Novel non-parametric method for simultaneous variable knot spline estimation
of both the pdf and the cdf of a random variable.

1⃝ In the literature, non-parametric density estimation methods address the
estimation of solely the pdf. However, pdf and cdf are closely connected.

2⃝ Model structure under which, both the pdf and cdf spline models share the
same set of knots + their coefficients are connected.

3⃝ Iterative approach combining:
– Constrained maximum likelihood estimation of the spline coefficients.
– Sequential minimum bias driven estimation of the underlying spline knots,

following the Geometrically Designed Spline (GeDS) methodology (Kaishev et al.,
2016, Dimitrova et al., 2023, Dimitrova et al., 2025).

4⃝ Competitive alternative to state of the art methods, e.g., kernel, logsplines
(Kooperberg and Stone, 1991), and recent spline-based methods (Cui et al.,
2020, Kirkby et al., 2021) + Large sample properties.
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h The pdf, f(x), is approximated by a spline function, from the space of all
n-th order spline functions, Stk,n

,

f(x; tk,n, θ) = θT Nn(x) =
p∑

j=1
θjNj,n(x), (1)

where θ = (θ1, ..., θp)T is a vector of non-negative coefficients and Nn(x) =
(N1,n(x), . . . , Np,n(x))T , p = n + k, are normalized B-splines of order n,
defined on the set of non-decreasing knots,

tk,n = {t1 = . . . = tn < tn+1 < . . . < tn+k < tn+k+1 = . . . = t2n+k}. (2)

In order for f(x; tk,n, θ), to integrate to one and be a valid pdf, then

p∑
j=1

θj
(tj+n − tj)

n
= 1, must hold. (3)
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h For the cdf, F (x), it is natural to take

F (x; tk,n+1, θ′) =
∫ x

x

f(u; tk,n; θ)du =
p∑

j=1
θ′

jNj,n+1(x), x ≤ x ≤ x, (4)

where

θ′ =
(
θ′

1, ..., θ′
p

)T
, θ′

j =
j∑

i=1
θi

ti+n − ti

n
, (5)

and Nj,n+1(x), j = 1, . . . , p, are B-splines of order n + 1, on the set of
non-decreasing knots

tk,n+1 = {t0 = t1 = . . . = tn < tn+1 < . . .

. . . < tn+k < tn+k+1 = . . . = t2n+k = t2n+k+1, } (6)

with Nj,n+1(x) supported on [tj , tj+n+1], j = 1, . . . , p.
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Univariate pdf/cdf estimation

1. Given a set of knots {tn+1, . . . , tn+k} ⊂ tk,n ⊂ tk,n+1, we find the ML
estimates of the parameters, θ, by solving the optimization problem

θ̂ = arg max
θ

N∑
i=1

log f(Xi; tk,n, θ), (7)

subject to the constraints

θj ≥ 0, j = 1, . . . , p, and
p∑

j=1
θj

tj+n − tj

n
= 1. (8)
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2. For a ML estimate θ̂, obtained from (7), and estimates θ̂′, obtained from (5),
find an updated set of knots, t̂k,n+1, such that it minimizes the L2-distance
between FN (x) and F (x; tk,n+1, θ̂′):

t̂k,n+1 = arg min
tk,n+1

N∑
i=1

{
FN (Xi)− F (Xi; tk,n+1, θ̂′)

}2
(9)

subject to the constraints {tn+1 < . . . < tn+k} ⊂ tk,n ⊂ tk,n+1.︸ ︷︷ ︸
à Since, k may be large, (9) is in general a highly multivariate optimization

problem, non-linear in tn+1, . . . , tn+k , that is virtually impossible to solve
(see, e.g., De Boor, 1978 and Lindstrom, 1999).
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Instead of (9), we sequentially estimate the knots, tn+1, . . . , tn+k , applying the
procedure underpinning Stage A of the Geometrically Designed Splines
(GeDS) (Kaishev et al., 2016 and Dimitrova et al., 2023):

ä At each iteration we place a knot, δ∗, within the cluster that maximizes the
following-bias dominated measure:

wj = βm′
j + (1− β)η′

j , j = 1, ..., u (10)

where m′
j , η

′
j denote the normalized mean and range values of the j-th

cluster of residuals.

Emilio L. Sáenz Guillén https://emilioluissaenzguillen.github.io/ IME 2025 10/40



Introduction DDFS estimation Large sample properties Numerical examples An application for risk measurement References

Iterative estimation process

Step 1. Given tk,n, find the ML estimates, θ̂, of f(x; tk,n, θ).
Step 2. Use θ̂ and tk,n to compute θ̂′, and then compute F (x; tk,n+1, θ̂′),
recalling that, tk,n+1 is obtained from tk,n, by adding the additional end knots,
t0 = t1, and t2n+k+1 = t2n+k.
Step 3. Compute the residuals

ρi = FN (Xi)− F (Xi; tk,n+1, θ̂′), i = 1, ..., N, (11)

that provide information for the discrepancy between the ecdf, FN (x), and the
estimate, F (Xi; tk,n+1, θ̂′), of the cdf F .
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On the k-th iteration, if k ≤ q, go to Step 4. Otherwise, use the residuals, ρi,
i = 1, . . . , N , to compute the ratio

ϕ =
∑N

i=1

{
FN (Xi)− F (Xi; tk,n+1, θ̂′)

}2

∑N
i=1

{
FN (Xi)− F (Xi; tk−q,n+1, θ̂′)

}2 . (12)

If ϕ ≥ ϕexit, then exit the iterations with final estimates, f(x; tk−q,n, θ̂) and
F (x; tk−q,n+1, θ̂′). If ϕ < ϕexit, then go to Step 4.
Step 4. Find a new knot δ∗, applying the locally adaptive bias minimizing knot
insertion scheme of Stage A of GeDS, viewing ρi, from (11), as the observations
yi, i = 1, . . . , N .
Update the current set of knots as, tk+1,n+1 = tk,n+1 ∪ δ∗. Set,
tk,n ← tk+1,n+1 and go back to Step 1.
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Asymptotic properties of DDFS

Lemma. The spline density estimator, f(x; tk,n, θ) can be expressed as the
following mixture

f(x; tk,n, θ) = α1fL1(x; τ1) + . . . + αpfLp(x; τp), (13)

where αj = θj
tj+n−tj

n ≥ 0,
∑p

j=1 αj = 1, and where fLj (x; τj)
j = 1, . . . , p, are densities, with respect to the Lebesgue measure, of the linear
combinations, Lj , j = 1, . . . , p of Dirichlet random variables (follows from (1),
(3) and a result due to Ignatov and Kaishev, 1989).

Theorem. For a fixed set of knots, tk,n, the ML estimates θ̂ are strongly
consistent and asymptotically normal as N →∞ (the result of the theorem
follows from the Lemma above and a result due to Redner and Walker, 1984).
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Test case Density Test case Density

Gaussian N(0, 1) Merton’s jump σ = 0.08, λ = 3 µJ = −0.01,

diffusion σJ = 0.4, ∆t = 1/4

Student-t tv , v = 6 Kou’s double σ = 0.04, λ = 2 pup = 0.4,

exponential η1 = 3, η2 = 5, ∆t = 1/4

Exponential Exp(λ), λ = 1, x ≥ 0 Generalized 1
σ exp

(
−

(
1 + k x−µ

σ

)− 1
k

)
(1 + k x−µ

σ )−1− 1
k

extreme value k = −0.5, 0 and 0.5, µ = 1, σ = 0, x > 0

Chi-square χ2
k , k = 4, x > 0 MixGauss 0.15N(−0.25, 1/3) + 0.85N(3.25, 1)

Gamma x ≥ 0, k = 9, θ = 0.5 Mix1d 0.8χ2(3) + 0.2N(7, 1)

Weibull x ≥ 0, λ = 1, k = 5 MixGauss2 5
6N(3, 1) + 5

36N(8, (1/3)2) + 1
36N(10, (1/9)2)

Log-normal x > 0, µ = 0, σ = 1 Bimodal 1
2N

(
0,

(
1
10

)2
)

+ 1
2N (5, 1)

Nakagami 2µµx2µ−1

Γ(µ)ωµ exp
(
−µ

ω x2)
, x > 0, µ = ω = 2 Separated bimodal 1

2N(−2,
(

1
2

)2
) + 1

2N(2,
(

1
2

)2
)

Kurtotic unimodal 2
3N (0, 1) + 1

3N

(
0,

(
1
10

)2
)

Skewed bimodal 3
4N(0, 1) + 1

4N(3
2 ,

(
1
3

)2
)

Outlier 1
10N (0, 1) + 9

10N

(
0,

(
1
10

)2
)

Trimodal 1
3

∑2
k=0 N

(
80k, (k + 1)4)

Skewed unimodal 1
5N (0, 1) + 1

5N(1
2 ,

(
2
3

)2
) + 3

5N

(
13
12 ,

(
5
9

)2
)

Smooth comb
∑5

k=0
25−k

63 N

(
65−96/2k

21 ,
(

32/63
2k

)2
)

Strongly skewed
∑7

k=0
1
8N

(
3

((
2
3

)k
− 1

)
,
(

2
3

)2k
)

Claw 1
2N (0, 1) +

∑4
k=0

1
10N

(
k
2 − 1,

(
1
10

)2
)
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We assess the goodness-of-fit over a regular grid of K evaluation points
x1, . . . , xK with uniform spacing ∆x = xi+1 − xi, based on:

• Mean Integrated Squared Error (MISE)

E
[∫ (

f̂(x; N)− f(x)
)2

dx

]
≈ ∆x

K∑
i=1

(
f̂(xi; N)− f(xi)

)2

• Roughness, R(f)

R(f) =
∫ (

f ′′(x)
)2

dx ≈ ∆x
K−1∑
i=2

(
f(xi+1)− 2f(xi) + f(xi−1)

(∆x)2

)2
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MISE boxplots - Generalized Extreme Value, Type I (Gumbel)
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MISE boxplots - Generalized Extreme Value, Type III (Weibull)
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Roughness - Generalized Extreme Value, Type I and III (pdf)
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Roughness - Generalized Extreme Value, Type I and III (cdf)
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Bivariate Gaussian, ρ = 0.5
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MISE boxplots - Bivariate Gaussian, ρ = 0.5
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Bivariate Bimodal Mixed Gaussian
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Bivariate Bimodal Mixed Gaussian
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Loss data modelling

Proliferation of composite and mixture (parametric) models proposed for the
modelling of insurance loss data (Marambakuyana and Shongwe, 2024).

h Estimation often requires large samples to converge (data
availability might be a problem) + high computational burden:
−→many actuarial studies only fit the model once (on the whole
dataset) and perform backtesting on a static forecast (see, e.g.,
Abu Bakar et al., 2015);︸ ︷︷ ︸
5 rolling-window historical simulation backtesting.
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Some frequently considered loss-datasets are:

1. Danish Fire Insurance.

2. Norwegian Fire Insurance Data.

3. US Allocated Loss Adjustment Expenses.︸ ︷︷ ︸
ä Assess model reliability via rolling window back-testing (Basel III, EIOPA):
Proportion of Failures (Kupiec, 1995), Conditional Coverage (Christoffersen, 1998),
Dynamic Quantile (Engle and and, 2004).
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Danish Fire Insurance
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Table 1: Backtesting statistics for VaR models (data = danish).

α = 0.975 α = 0.99

Viol. rate UC CC DQ Viol. rate UC CC DQ

ddfs 0.0250 0.9946 0.1776 0.0244 0.0103 0.9024 0.7819 0.0349

kernel 0.0259 0.7931 0.0623 0.0001 0.0116 0.4586 0.5600 0.0006

logspline 0.0245 0.8867 0.4458 0.1013 0.0120 0.3462 0.4617 0.0256

lognormal 0.0531 0.0000 0.0000 0.0000 0.0397 0.0000 0.0000 0.0000

gamma 0.0437 0.0000 0.0000 0.0000 0.0361 0.0000 0.0000 0.0000
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Norwegian Fire Insurance Data
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Table 2: Backtesting statistics for VaR models (data = norwegian).

α = 0.975 α = 0.99

Viol. rate UC CC DQ Viol. rate UC CC DQ

ddfs 0.0265 0.3816 0.0000 0.0206 0.0100 0.9832 0.0000 0.0001

kernel 0.0351 0.0000 0.0000 0.0078 0.0156 0.0000 0.0000 0.0000

logspline 0.0356 0.0000 0.0000 0.0074 0.0147 0.0001 0.0000 0.0000

lognormal 0.0583 0.0000 0.0000 0.0032 0.0390 0.0000 0.0000 0.0000

gamma 0.0466 0.0000 0.0000 0.0048 0.0336 0.0000 0.0000 0.0000
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US Allocated Loss Adjustment Expenses
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Table 3: Backtesting statistics for VaR models (data = lossalae).

α = 0.975 α = 0.99

Viol. rate UC CC DQ Viol. rate UC CC DQ

ddfs 0.0256 0.8923 0.0000 0.9663 0.0112 0.6757 0.0000 0.6161

kernel 0.0448 0.0001 0.0000 0.4172 0.0224 0.0002 0.0000 0.2674

logspline 0.0448 0.0001 0.0000 0.4292 0.0272 0.0000 0.0000 0.0133

lognormal 0.0200 0.2410 0.0218 0.9555 0.0072 0.2950 0.5413 0.6525

gamma 0.0488 0.0000 0.0000 0.4018 0.0360 0.0000 0.0000 0.0040
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