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1. Motivation

h Geometrically Designed Splines (GeDS) (Kaishev et al., 2016, Dimitrova et al.,
2023), — accurate and efficient tool for regression problems involving one or two
covariates.

h GeD spline methodology is extended further by:

1. GAM-GeDS: encompassing Generalized Additive Models (GAM), thereby making
GeDS highly multivariate.

2. FGB-GeDS: incorporating Functional Gradient Boosting (FGB), improving the
construction of the underlying spline regression model.︸ ︷︷ ︸

• Applications in highly multivariate contexts: AI (e.g., image recognition/processing);
robotics (e.g. motion planning for humanoid robots).

• Implemented in the R package GeDS, available from CRAN:
https://cran.r-project.org/package=GeDS
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2. GeDS estimation method

Free-knot spline regression technique based on a residual-driven (locally-adaptive)
knot insertion scheme that produces a piecewise linear spline fit, over which
smoother higher order spline fits are subsequently built.

GeDS method unfolds into two phases:

• STAGE A constructs a least squares linear spline fit to the data.
▶ Starting with a straight-line, LS fit, which is then sequentially “broken” by

iteratively introducing knots at those points ‘where the fit deviates most from the
underlying functional shape determined by the data’, based on a measure
defined by residuals.

• STAGE B
▶ Builds smoother higher order spline fits using Schoenberg’s variation

diminishing spline (VDS) approximation, based on the linear fit from Stage A.
▶ For each higher spline order (quadratic, cubic...), compute the averaging knot

location and re-estimate the spline coefficients by LS.
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Properties of GeDS estimated knots and regression coefficients:

h Schoenberg variation diminishing optimality of the estimated knots (Kaishev et al.,
2006b).

h Asymptotic normality of estimators in the case of normal noise, which allows for the
construction of pointwise asymptotic confidence intervals that effectively converge
(Kaishev et al., 2006a).

h Asymptotic conditions on the rate of growth of the knots for negligible bias/variance
ratio (Kaishev et al., 2006a).
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3. Generalized Additive Models with GeDS

The Generalized Additive Model (GAM) assumes the response variable, Y ∼ E.F.,
and relates its conditional expectation, µ = E [Y |X], to the predictor variables,
X1, ..., XP , via a link function g(·):

g(µ) = α +
P∑

j=1
fj(Xj), with E [fj(Xj)] = 0, j = 1, ..., P (1)

Hastie and Tibshirani, 1990 — local-scoring and backfitting algorithms in conjunction
with scatterplot smoothers, to fit GAMs.

GAM with GeD Splines: Local-scoring algorithm using GeD splines as
the function smoothers, fj , within the backfitting algorithm.
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3.1. Simulated data application

Consider the function (Gu and Wahba, 1991):

f(x) = 2 × sin(π × x0)︸ ︷︷ ︸
f0(x0)

+ exp(2x1)︸ ︷︷ ︸
f1(x1)

+ 0.2x11
2 (10(1 − x2))6 + 10(10x2)3(1 − x2)10︸ ︷︷ ︸

f2(x2)

• Example 1: Fit y = f(x) + ϵ, ϵ ∼ N (0, σ2
ϵ ), and also include a noise predictor x3.

• Example 2: replace f0(x0) by a factor variable x0 with 4 levels.
▶ 2.1: Include the noise predictor x3.
▶ 2.2: Delete the noise predictor x3.

å Generate 1, 000 random samples, {Xi, Yi}N
i=1, with N = 400 for example 1 and

N = 200 for example 2; x0, x1, x2, x3 ∼ Uniform(0, 1).
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Example 1: GAM-GeDS (partial) fits
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Example 1, 2.1 & 2.2: MSE boxplots
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4. Functional Gradient Boosting with GeDS

• Functional Gradient Boosting (FGB; Friedman, 2001).

h FGB-GeDS deals with major limitations of mainstream boosting algorithms:

• “Prone to overfitting”

à Optimal number of boosting iterations determined by a stopping rule based on
a ratio of consecutive deviances.

• “Large number of parameters and unstable performance”

à Strength of the base learners is automatically regulated by the GeDS
methodology and flexibly controlled through the GeDS parameters.

• “Black-box models”

à Final FGB-GeDS boosted model expressed as a single spline model, which
simplifies its evaluation and enhances interpretability.
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4.1. Simulated data application

Consider the following function:

å For each, generate 1, 000 random samples, {Xi, Yi}N
i=1 with Yi ∼ N (µi, σ),

σ = 0.2, µi = ηi = f1(Xi).
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GeDS 10 int. knots

FGB-GeDS Init. learner with 2 int. knots + 1 boosting iter. with 8 int. knots

mboost (competitor) 10,000 boosting iter. with 36 int. knots per iter.
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à And settingmboost to have 10 int. knots p/boosting iter. (i.e., ≃ FGB-GeDS):
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4.2 Task: Fourier Transform Computation of Materials
Science Data

Given a sample, L = {F (Qi), Qi}N
i=1, 0 < Q1 < ... < QN < Q̃max, we are

interested in estimating the Fourier transform (imaginary part):

G(r) = 2
π

∫ Qmax

0
F (Q) sin(Qr)dQ.

Assuming Qmax is known, this involves two steps:

Step 1. Estimate F (Q) through a GeDS fit ≡ S(Q) to the sample L.

Step 2. Compute G(r) using the fitted GeDS model, S(Q).

For the time being, let us assume Qmax ≡ Q̃max, though in general Qmax < Q̃max:

à Signal in the data prevails up to a certain point; beyond this, only noise remains.

à Sequential (and costly) data collection: cut off at the appropriate Qmax for an
optimal experimental design.
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Step 1. Fit F (Q), e.g, with a GeDSmodel
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Step 2. Compute the Fourier transform

Proposition
For the sin() transform,

G(r) = 2
π

∫ Qmax

0
F (Q) sin(Qr)dQ

of the function F (Q), approximated by S(Q) of order n = 2s, s = 1, 2, 3, . . . we
have

G(r) ≈ (−1)s2(n − 1)!
πrn

p∑
i=1

θ̂i (ti+n − ti)
i+n∑
j=i

sin(tjr)
i+n∏
l=i
l ̸=j

(tj − tl)
,

where r ∈ R+, p = k + n; θ̂i, i = 1, . . . , p are the GeDS regression coefficients.
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5. Insurance data application

Motorcycle insurance data swmotorcycle available through the R package
CASdatasets (Dutang and Charpentier, 2020).︸ ︷︷ ︸
−→ We follow Delong et al., 2021 and model gamma claim sizes:

1⃝ Gamma GLM regression + Gamma Neural Network regression.

2⃝ mboost: FGB with P-splines.

3⃝ GAM-GeDS.

4⃝ FGB-GeDS.

• Response: ClaimAmount/ClaimNb, i.e., the average claim size.

• Covariates: OwnerAge; Gender; Area, RiskClass; VehAge.
• Train/Test split: 80%/20%.
▶ Simulate 100 different splits of data.
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Table 1: GLM/GAM Models

Gamma Deviance Internal knots

Train Data Test Data Time (sec.) (OwnerAge+VehAge)
GLM 1.585727 1.694797 0.008708 -

GLM NN 1.719903 1.859394 167.224576 -

GAM-GeDS quadratic 1.557612 1.686492 0.671260 5

Table 2: Boosting Models

Gamma Deviance Internal knots Boosting

Train Data Test Data Time (sec.) p/boosting iter. iterations

(OwnerAge+VehAge)
mboost 1.610290 1.676810 0.156095 4 100

FGB-GeDS linear 1.575972 1.648345 0.130963 2 1

(2 starting knots)

FGB-GeDS w/mem. linear 1.575536 1.667158 0.129040 1 3

(1 starting knot)
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Concluding remarks

h GeDS is able to perform well both with more intricate, wiggly data, as well as with
more disperse data.

h Broad scope of applications (insurance data, materials science data

Further extensions:
▶ Quantile regression (Hendricks and Koenker, 1992).
▶ Varying coefficients regression (Hastie and Tibshirani, 1993).
▶ Density estimation.

Emilio Sáenz Guillén emilio.saenz-guillen@bayes.city.ac.uk COMPSTAT 2024 28/29



Motivation GeDS GAM with GeDS FGB with GeDS Insurance data References

Delong, Ł., Lindholm, M., & Wüthrich, M. V. (2021).Making tweedie’s compound poisson model more accessible. European Actuarial
Journal, 11(1), 185–226. https://doi.org/10.1007/s13385-021-00264-3

Dimitrova, D. S., Kaishev, V. K., Lattuada, A., & Verrall, R. J. (2023).Geometrically designed variable knot splines in generalized (non-)linear
models. Applied Mathematics and Computation, 436, 127493. https://doi.org/https://doi.org/10.1016/j.amc.2022.127493

Dutang, C., & Charpentier, A. (2020). Casdatasets: Insurance datasets [R package version 1.0-11].

Friedman, J. H. (2001).Greedy function approximation: A gradient boosting machine.. The Annals of Statistics, 29(5), 1189–1232.
https://doi.org/10.1214/aos/1013203451

Gu, C., & Wahba, G. (1991).Minimizing gcv/gml scores with multiple smoothing parameters via the newton method. SIAM J. Sci. Comput.,
12, 383–398. https://api.semanticscholar.org/CorpusID:5789455

Hastie, T., & Tibshirani, R. (1990).Generalized additive models. Monographs on statistics and applied probability. Chapman & Hall, 43, 335.

Hastie, T., & Tibshirani, R. (1993).Varying-coefficient models. Journal of the Royal Statistical Society. Series B (Methodological), 55(4),
757–796. Retrieved November 6, 2023, from http://www.jstor.org/stable/2345993

Hendricks, W., & Koenker, R. (1992).Hierarchical spline models for conditional quantiles and the demand for electricity. Journal of the
American Statistical Association, 87(417), 58–68. Retrieved November 26, 2023, from http://www.jstor.org/stable/2290452

Kaishev, V. K., Dimitrova, D. S., Haberman, S., & Verrall, R. J. (2006a). Geometrically designed, variable knot regression splines: Asymptotics
and inference (Statistical Research Paper No. 28). Faculty of Actuarial Science & Insurance, City University London. London, UK.

Kaishev, V. K., Dimitrova, D. S., Haberman, S., & Verrall, R. J. (2006b). Geometrically designed, variable knot regression splines: Variation
diminish optimality of knots (Statistical Research Paper No. 29). Faculty of Actuarial Science & Insurance, City University
London. London, UK.

Kaishev, V. K., Dimitrova, D. S., Haberman, S., & Verrall, R. J. (2016).Geometrically designed, variable knot regression splines.
Computational Statistics, 31(3), 1079–1105. https://doi.org/10.1007/s00180-015-0621-7

Emilio Sáenz Guillén emilio.saenz-guillen@bayes.city.ac.uk COMPSTAT 2024 29/29

https://doi.org/10.1007/s13385-021-00264-3
https://doi.org/https://doi.org/10.1016/j.amc.2022.127493
https://doi.org/10.1214/aos/1013203451
https://api.semanticscholar.org/CorpusID:5789455
http://www.jstor.org/stable/2345993
http://www.jstor.org/stable/2290452
https://doi.org/10.1007/s00180-015-0621-7

	Motivation
	GeDS estimation method
	Generalized Additive Models with GeDS
	Functional Gradient Boosting with GeDS
	Simulated data
	Real data from materials science

	Insurance data
	References

