

Enhancing Geometrically Designed Spline (GeDS) Regression through Generalized Additive Models and Functional Gradient Boosting

Dimitrina S. Dimitrova¹, Vladimir K. Kaishev¹ and
Emilio Sáenz Guillén (presenter)¹

26th International Conference on Computational Statistics
(COMPSTAT 2024)

¹ Faculty of Actuarial Science and Insurance, Bayes Business School.
Email: emilio.saenz-guillen@bayes.city.ac.uk

1. Motivation

2. GeDS estimation method

3. Generalized Additive Models with GeDS

4. Functional Gradient Boosting with GeDS

4.1 Simulated data

4.2 Real data from materials science

5. Insurance data

1. Motivation

- ✿ **Geometrically Designed Splines (GeDS)** (Kaishev et al., 2016, Dimitrova et al., 2023), — accurate and efficient tool for regression problems involving one or two covariates.

1. Motivation

- ✿ **Geometrically Designed Splines (GeDS)** (Kaishev et al., 2016, Dimitrova et al., 2023), — accurate and efficient tool for regression problems involving one or two covariates.
- ✿ GeD spline methodology is extended further by:
 1. **GAM-GeDS**: encompassing **Generalized Additive Models (GAM)**, thereby making GeDS highly multivariate.
 2. **FGB-GeDS**: incorporating **Functional Gradient Boosting (FGB)**, improving the construction of the underlying spline regression model.

1. Motivation

- ✿ **Geometrically Designed Splines (GeDS)** (Kaishev et al., 2016, Dimitrova et al., 2023), — accurate and efficient tool for regression problems involving one or two covariates.
- ✿ GeD spline methodology is extended further by:
 1. **GAM-GeDS**: encompassing **Generalized Additive Models (GAM)**, thereby making GeDS highly multivariate.
 2. **FGB-GeDS**: incorporating **Functional Gradient Boosting (FGB)**, improving the construction of the underlying spline regression model.

- Applications in highly multivariate contexts: AI (e.g., image recognition/processing); robotics (e.g. motion planning for humanoid robots).
 - Implemented in the R package **GeDS**, available from CRAN:
<https://cran.r-project.org/package=GeDS>

1. Motivation

2. GeDS estimation method

3. Generalized Additive Models with GeDS

4. Functional Gradient Boosting with GeDS

4.1 Simulated data

4.2 Real data from materials science

5. Insurance data

2. GeDS estimation method

Free-knot spline regression technique based on a ***residual-driven (locally-adaptive) knot insertion scheme*** that produces a piecewise linear spline fit, over which ***smoother higher order spline fits*** are subsequently built.

2. GeDS estimation method

Free-knot spline regression technique based on a ***residual-driven (locally-adaptive) knot insertion scheme*** that produces a piecewise linear spline fit, over which ***smoother higher order spline fits*** are subsequently built.

GeDS method unfolds into two phases:

- **STAGE A** constructs a least squares linear spline fit to the data.
 - ▶ Starting with a straight-line, LS fit, which is then sequentially “broken” by iteratively introducing knots at those points ‘where the fit deviates most from the underlying functional shape determined by the data’, based on a measure defined by residuals.

2. GeDS estimation method

Free-knot spline regression technique based on a ***residual-driven (locally-adaptive) knot insertion scheme*** that produces a piecewise linear spline fit, over which ***smoother higher order spline fits*** are subsequently built.

GeDS method unfolds into two phases:

- **STAGE A** constructs a least squares linear spline fit to the data.
 - ▶ Starting with a straight-line, LS fit, which is then sequentially “broken” by iteratively introducing knots at those points ‘where the fit deviates most from the underlying functional shape determined by the data’, based on a measure defined by residuals.
- **STAGE B**
 - ▶ Builds smoother higher order spline fits using Schoenberg’s variation diminishing spline (VDS) approximation, based on the linear fit from Stage A.
 - ▶ For each higher spline order (quadratic, cubic...), compute the *averaging knot location* and re-estimate the spline coefficients by LS.

Properties of GeDS estimated knots and regression coefficients:

- ✿ *Schoenberg variation diminishing optimality* of the estimated knots (Kaishev et al., 2006b).
- ✿ *Asymptotic normality* of estimators in the case of normal noise, which allows for the construction of pointwise asymptotic confidence intervals that effectively converge (Kaishev et al., 2006a).
- ✿ Asymptotic conditions on the rate of growth of the knots for *negligible bias/variance ratio* (Kaishev et al., 2006a).

1. Motivation

2. GeDS estimation method

3. Generalized Additive Models with GeDS

4. Functional Gradient Boosting with GeDS

4.1 Simulated data

4.2 Real data from materials science

5. Insurance data

3. Generalized Additive Models with GeDS

The **Generalized Additive Model (GAM)** assumes the response variable, $Y \sim E.F.$, and relates its conditional expectation, $\mu = \mathbb{E}[Y|X]$, to the predictor variables, X_1, \dots, X_P , via a link function $g(\cdot)$:

$$g(\mu) = \alpha + \sum_{j=1}^P f_j(X_j), \text{ with } \mathbb{E}[f_j(X_j)] = 0, \quad j = 1, \dots, P \quad (1)$$

Hastie and Tibshirani, 1990 — *local-scoring* and *backfitting* algorithms in conjunction with scatterplot smoothers, to fit GAMs.

GAM with GeD Splines: Local-scoring algorithm using GeD splines as the function smoothers, f_j , within the backfitting algorithm.

3.1. Simulated data application

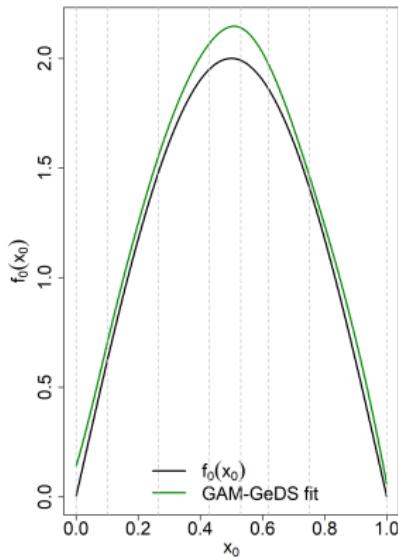
Consider the function (Gu and Wahba, 1991):

$$f(\mathbf{x}) = \underbrace{2 \times \sin(\pi \times x_0)}_{f_0(x_0)} + \underbrace{\exp(2x_1)}_{f_1(x_1)} + \underbrace{0.2x_2^{11}(10(1-x_2))^6 + 10(10x_2)^3(1-x_2)^{10}}_{f_2(x_2)}$$

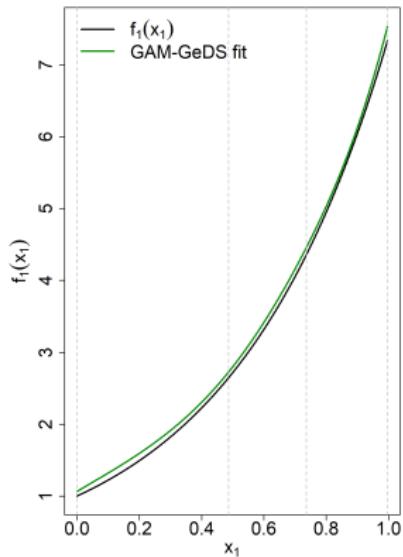
- **Example 1:** Fit $y = f(\mathbf{x}) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma_\epsilon^2)$, and also include a noise predictor x_3 .
- **Example 2:** replace $f_0(x_0)$ by a factor variable x_0 with 4 levels.
 - ▶ **2.1:** Include the noise predictor x_3 .
 - ▶ **2.2:** Delete the noise predictor x_3 .
- ▶ Generate 1,000 random samples, $\{X_i, Y_i\}_{i=1}^N$, with $N = 400$ for example 1 and $N = 200$ for example 2; $x_0, x_1, x_2, x_3 \sim \text{Uniform}(0, 1)$.

Example 1: GAM-GeDS (partial) fits

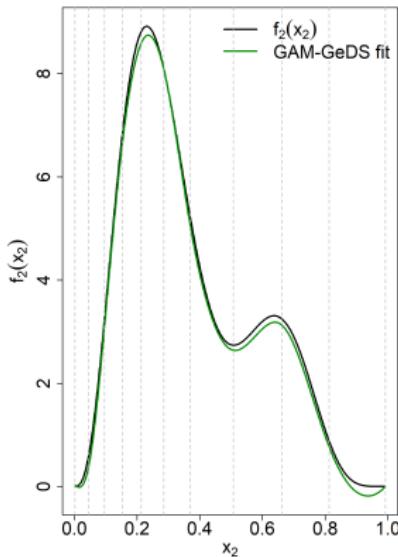
$$f_0(x_0) = 2\sin(\pi x_0), \quad x_0 \in \mathbb{C}(0, 1)$$



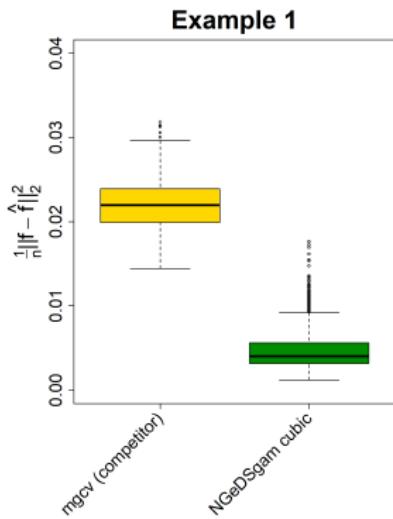
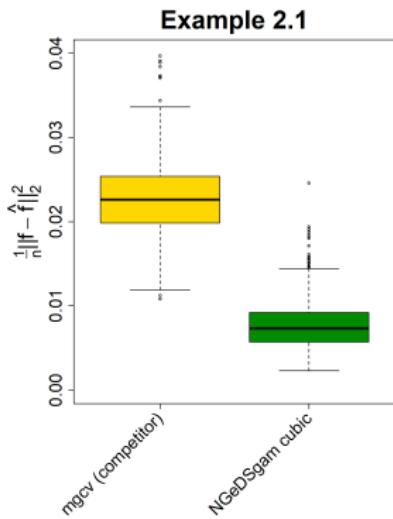
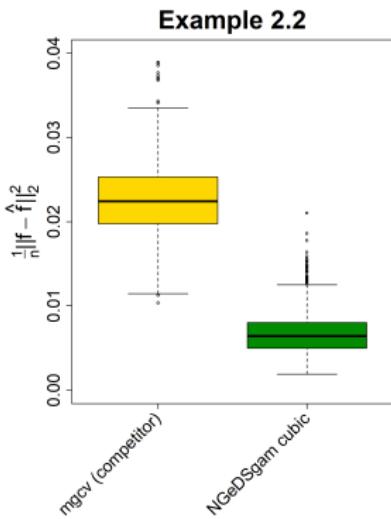
$$f_1(x_1) = e^{(2x_1)}, \quad x_1 \in \mathbb{C}(0, 1)$$



$$f_2(x_2) = 0.2x_2^{11}(10(1-x_2))^6 + 10(10x_2)^3(1-x_2)^{10}$$



Example 1, 2.1 & 2.2: MSE boxplots



1. Motivation

2. GeDS estimation method

3. Generalized Additive Models with GeDS

4. Functional Gradient Boosting with GeDS

4.1 Simulated data

4.2 Real data from materials science

5. Insurance data

4. Functional Gradient Boosting with GeDS

- **Functional Gradient Boosting** (FGB; Friedman, 2001).

⌘ FGB-GeDS deals with major limitations of mainstream boosting algorithms:

4. Functional Gradient Boosting with GeDS

- **Functional Gradient Boosting** (FGB; Friedman, 2001).

✳ **FGB-GeDS deals with major limitations of mainstream boosting algorithms:**

- **“Prone to overfitting”**
 - ➡ Optimal number of boosting iterations determined by a **stopping rule** based on a ratio of consecutive deviances.

4. Functional Gradient Boosting with GeDS

- **Functional Gradient Boosting** (FGB; Friedman, 2001).

* **FGB-GeDS deals with major limitations of mainstream boosting algorithms:**

- **“Prone to overfitting”**
 - ➡ Optimal number of boosting iterations determined by a **stopping rule** based on a ratio of consecutive deviances.
- **“Large number of parameters and unstable performance”**
 - ➡ Strength of the base learners is **automatically regulated by the GeDS** methodology and flexibly controlled through the GeDS parameters.

4. Functional Gradient Boosting with GeDS

- **Functional Gradient Boosting** (FGB; Friedman, 2001).

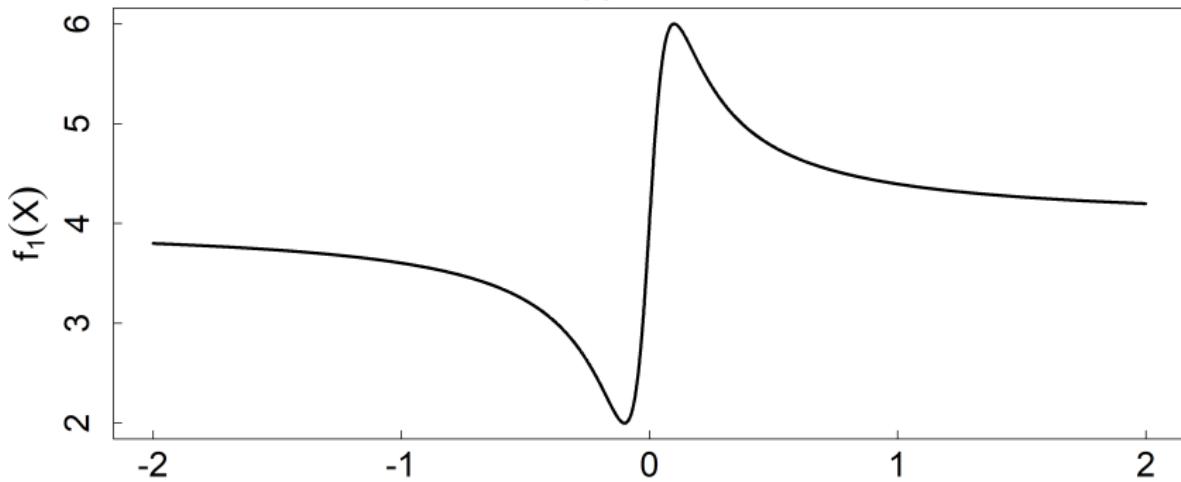
* FGB-GeDS deals with major limitations of mainstream boosting algorithms:

- “**Prone to overfitting**”
 - ➡ Optimal number of boosting iterations determined by a **stopping rule** based on a ratio of consecutive deviances.
- “**Large number of parameters and unstable performance**”
 - ➡ Strength of the base learners is **automatically regulated by the GeDS** methodology and flexibly controlled through the GeDS parameters.
- “**Black-box models**”
 - ➡ Final FGB-GeDS boosted model expressed as a **single spline model**, which simplifies its evaluation and enhances interpretability.

4.1. Simulated data application

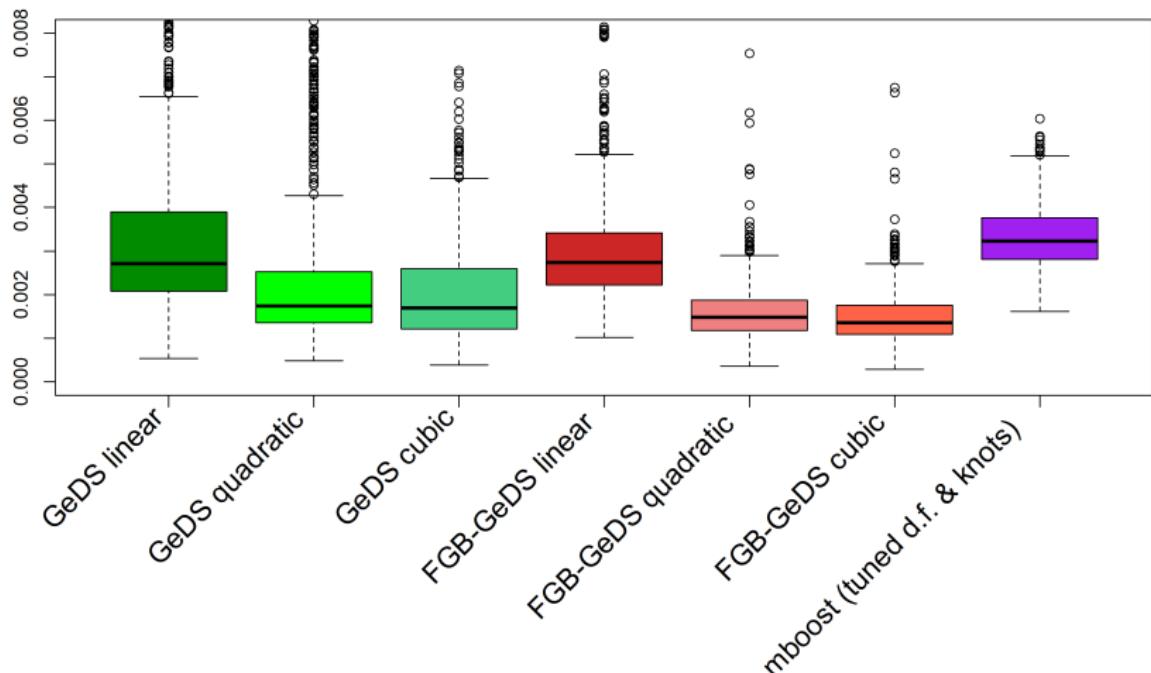
Consider the following function:

$$f_1(x) = 40 \frac{x}{1 + 100x^2} + 4, \quad x \in \mathbb{C}(-2, 2)$$

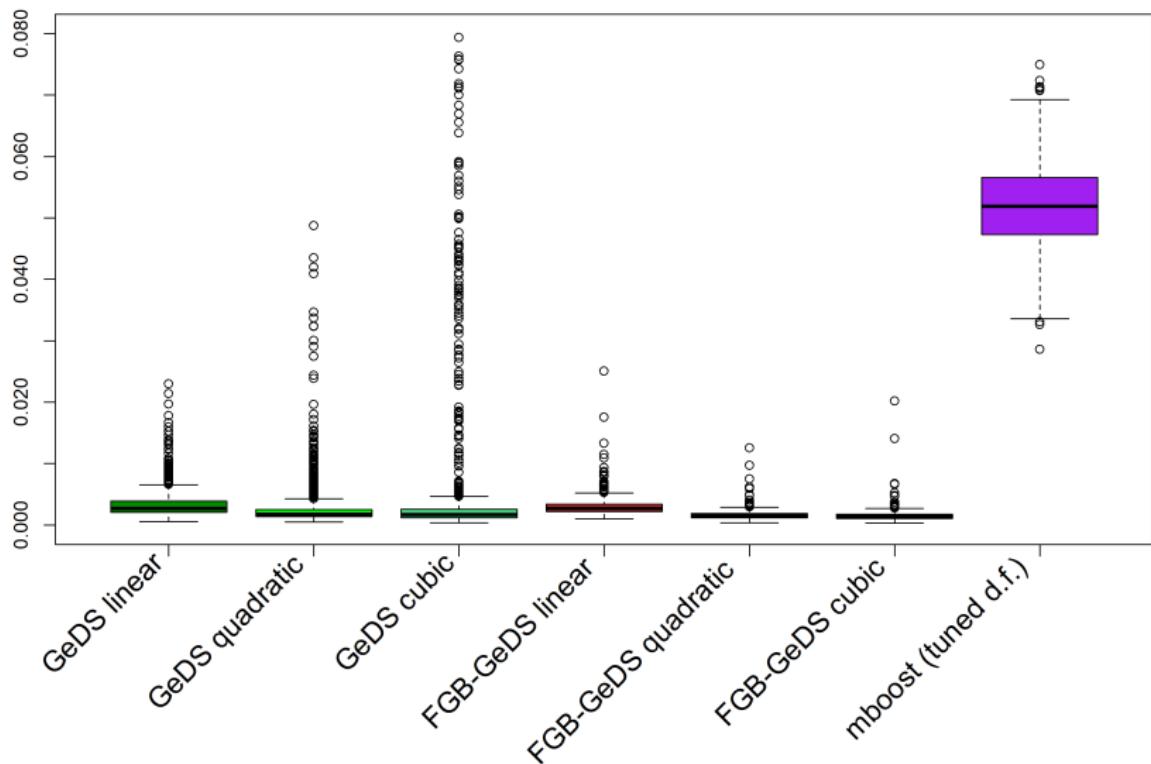


- For each, generate 1,000 random samples, $\{X_i, Y_i\}_{i=1}^N$ with $Y_i \sim \mathcal{N}(\mu_i, \sigma)$, $\sigma = 0.2$, $\mu_i = \eta_i = f_1(X_i)$.

GeDS	10 int. knots
FGB-GeDS	Init. learner with 2 int. knots + 1 boosting iter. with 8 int. knots
mboost (competitor)	10,000 boosting iter. with 36 int. knots per iter.



➡ And setting **mboost** to have 10 int. knots p/boosting iter. (i.e., \simeq **FGB-GeDS**):



4.2 Task: Fourier Transform Computation of Materials Science Data

Given a sample, $\mathcal{L} = \{F(Q_i), Q_i\}_{i=1}^N$, $0 < Q_1 < \dots < Q_N < \tilde{Q}_{\max}$, we are interested in estimating the **Fourier transform** (imaginary part):

$$G(r) = \frac{2}{\pi} \int_0^{\tilde{Q}_{\max}} F(Q) \sin(Qr) dQ.$$

Assuming \tilde{Q}_{\max} is known, this involves two steps:

Step 1. Estimate $F(Q)$ through a GeDS fit $\equiv S(Q)$ to the sample \mathcal{L} .

Step 2. Compute $G(r)$ using the fitted GeDS model, $S(Q)$.

4.2 Task: Fourier Transform Computation of Materials Science Data

Given a sample, $\mathcal{L} = \{F(Q_i), Q_i\}_{i=1}^N$, $0 < Q_1 < \dots < Q_N < \tilde{Q}_{\max}$, we are interested in estimating the **Fourier transform** (imaginary part):

$$G(r) = \frac{2}{\pi} \int_0^{Q_{\max}} F(Q) \sin(Qr) dQ.$$

Assuming Q_{\max} is known, this involves two steps:

Step 1. Estimate $F(Q)$ through a GeDS fit $\equiv S(Q)$ to the sample \mathcal{L} .

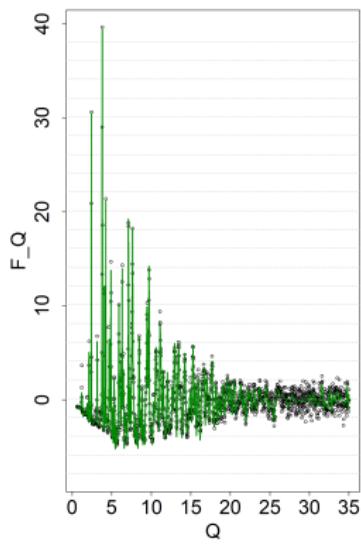
Step 2. Compute $G(r)$ using the fitted GeDS model, $S(Q)$.

For the time being, let us assume $Q_{\max} \equiv \tilde{Q}_{\max}$, though in general $Q_{\max} < \tilde{Q}_{\max}$:

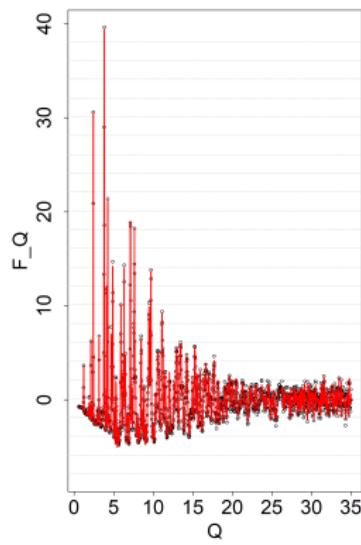
- ➡ Signal in the data prevails up to a certain point; beyond this, only noise remains.
- ➡ Sequential (and costly) data collection: cut off at the appropriate Q_{\max} for an optimal experimental design.

Step 1. Fit $F(Q)$, e.g, with a GeDS model

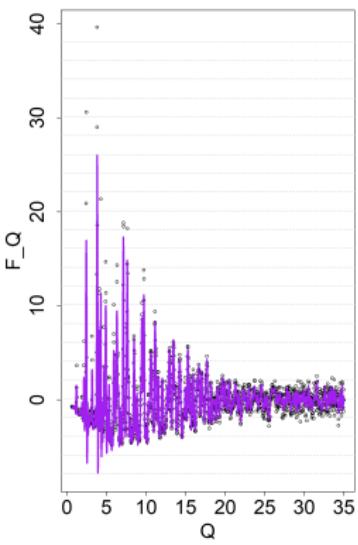
NGeDS
231 knots
MSE: 0.4137057



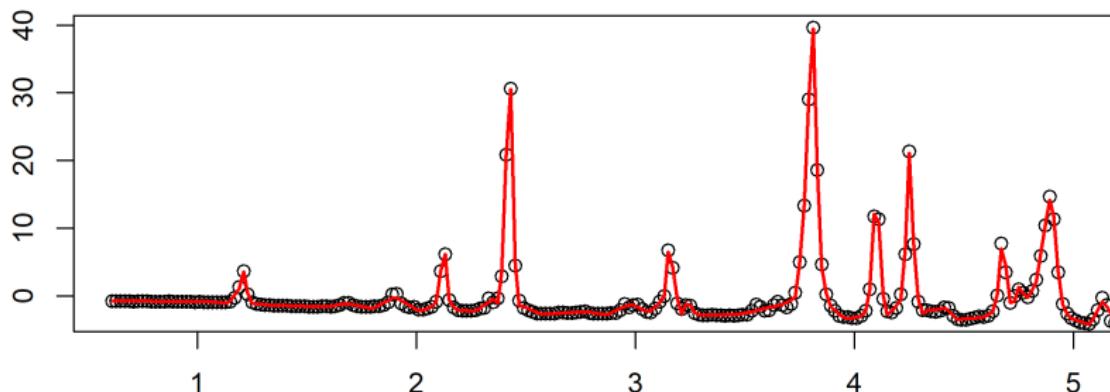
NGeDSboost
initial learner w/ 2 int. knots +
1 boosting iter. w/ 468 int. knots
MSE: 0.1401462



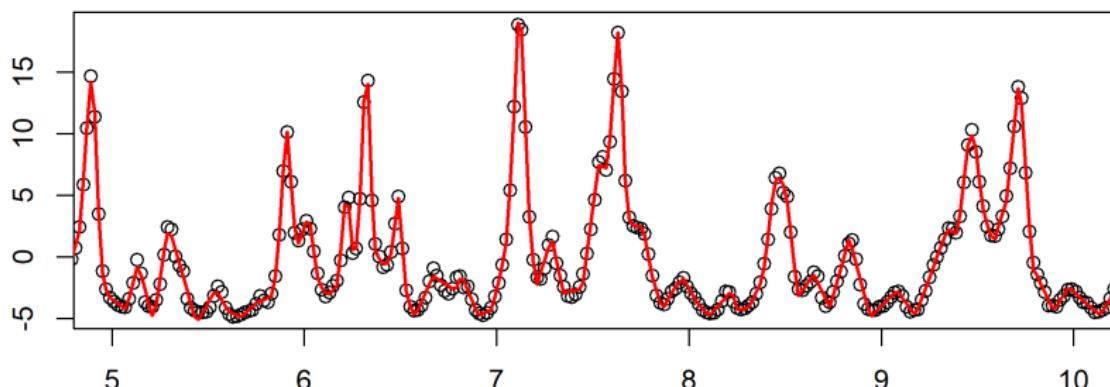
mboost
470 int. knots p/boosting iter.,
10,000 boosting iter.
MSE: 1.327903

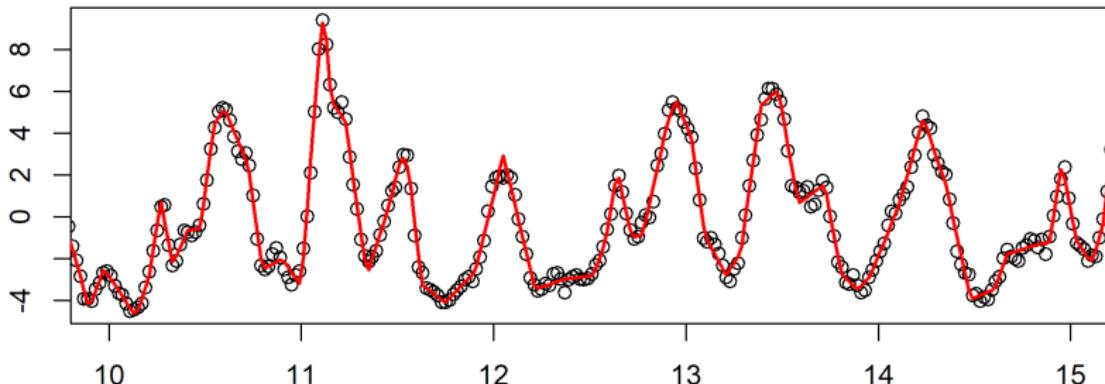
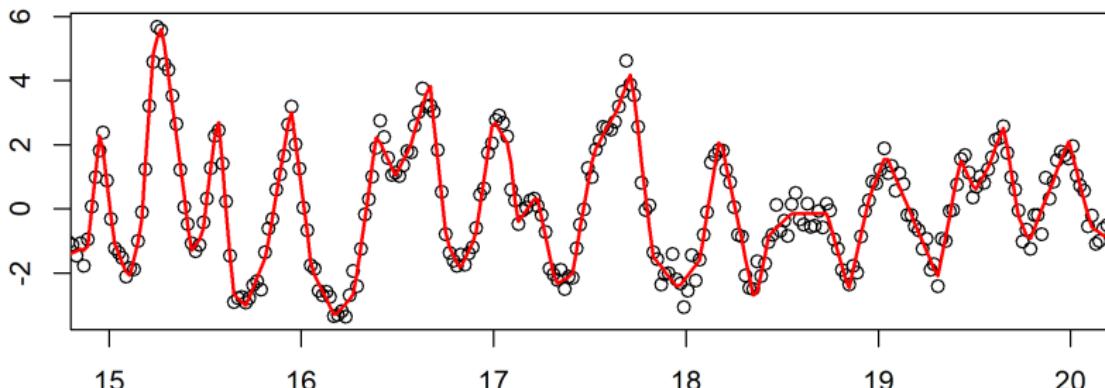


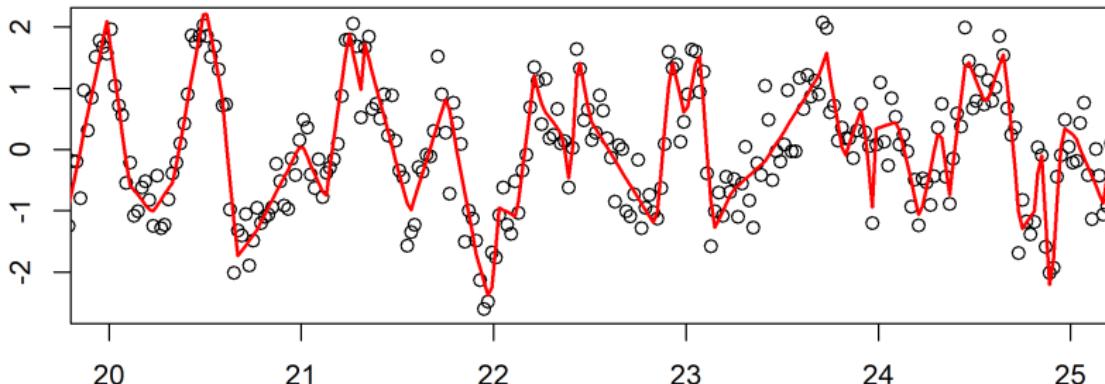
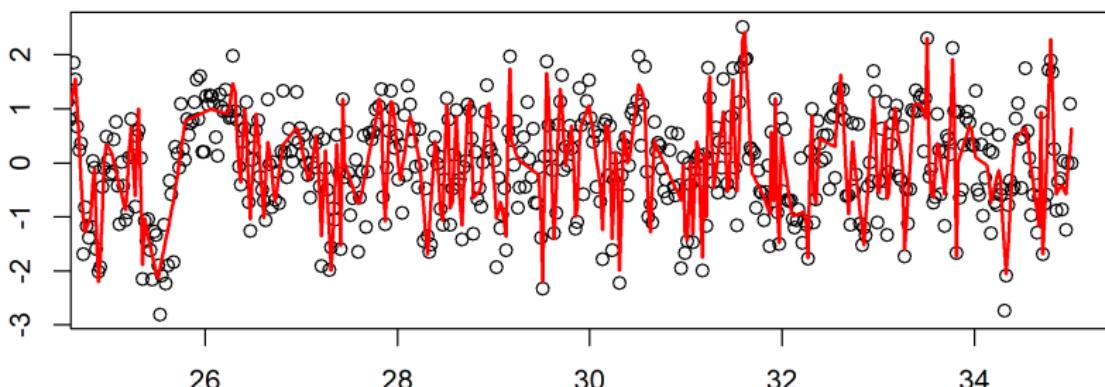
$$Q \in (0, 5]$$



$$Q \in (5, 10]$$



$Q \in (10, 15]$  $Q \in (15, 20]$ 

$Q \in (20, 25]$  $Q \in (25, 35]$ 

Step 2. Compute the Fourier transform

Proposition

For the $\sin()$ transform,

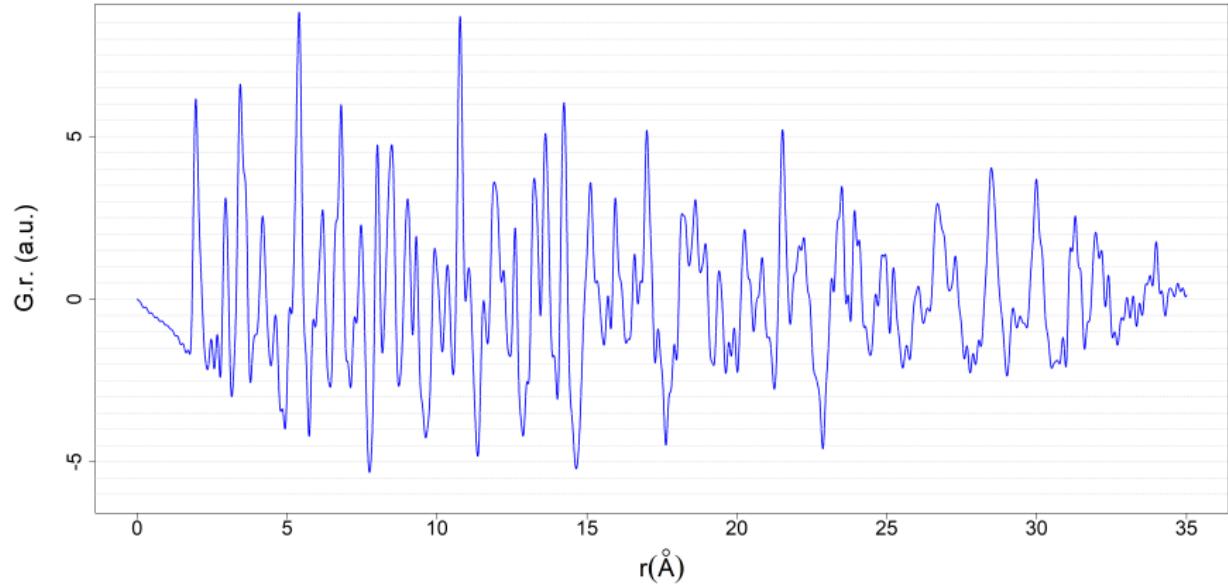
$$G(r) = \frac{2}{\pi} \int_0^{Q_{\max}} F(Q) \sin(Qr) dQ$$

of the function $F(Q)$, approximated by $S(Q)$ of order $n = 2s$, $s = 1, 2, 3, \dots$ we have

$$G(r) \approx \frac{(-1)^s 2(n-1)!}{\pi r^n} \sum_{i=1}^p \hat{\theta}_i (t_{i+n} - t_i) \sum_{j=i}^{i+n} \frac{\sin(t_j r)}{\prod_{\substack{l=i \\ l \neq j}}^{i+n} (t_j - t_l)},$$

where $r \in \mathbb{R}^+$, $p = k + n$; $\hat{\theta}_i$, $i = 1, \dots, p$ are the GeDS regression coefficients.

Step size of r is 0.01



1. Motivation

2. GeDS estimation method

3. Generalized Additive Models with GeDS

4. Functional Gradient Boosting with GeDS

4.1 Simulated data

4.2 Real data from materials science

5. Insurance data

5. Insurance data application

Motorcycle insurance data `swmotorcycle` available through the R package `CASdatasets` (Dutang and Charpentier, 2020).

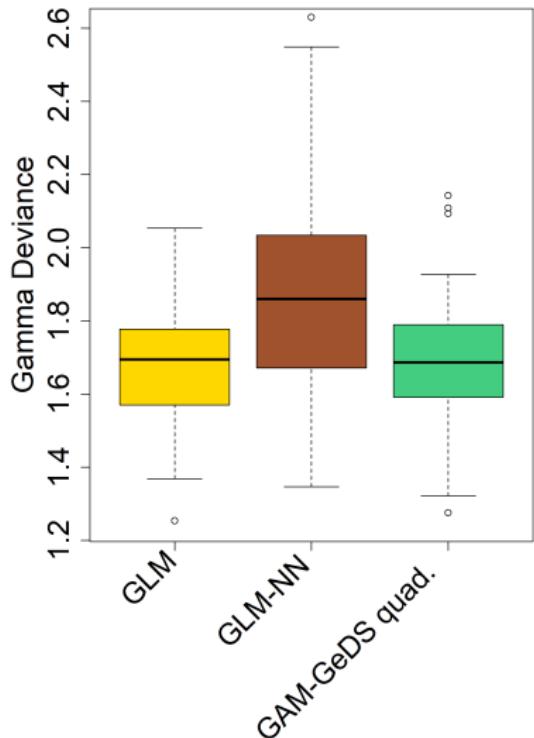
→ We follow Delong et al., 2021 and model **gamma claim sizes**:

- ① Gamma GLM regression + Gamma Neural Network regression.
- ② `mboost`: FGB with P-splines.
- ③ GAM-GeDS.
- ④ FGB-GeDS.

- *Response*: `ClaimAmount/ClaimNb`, i.e., the average claim size.
- *Covariates*: `OwnerAge`; `Gender`; `Area`, `RiskClass`; `VehAge`.
- *Train/Test split*: **80%/20%**.

► Simulate 100 different splits of data.

GLM/GAM Models



Boosting Models

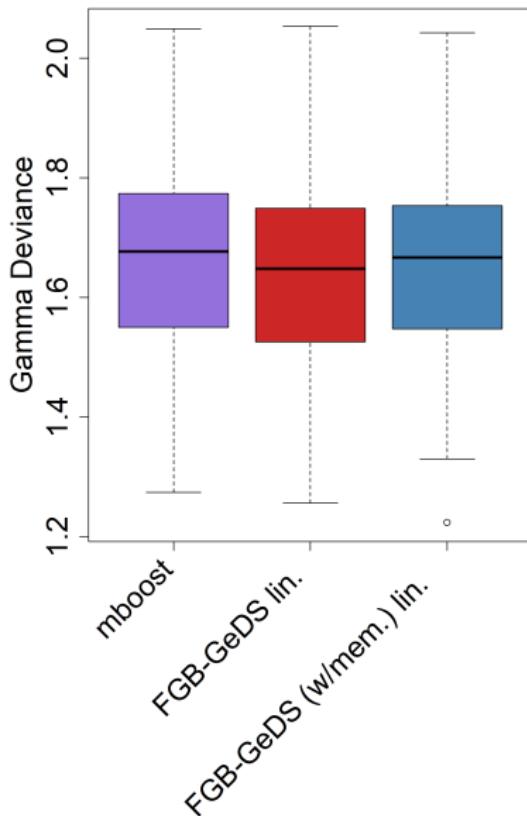


Table 1: GLM/GAM Models

	Gamma Deviance		Time (sec.)	Internal knots (OwnerAge+VehAge)
	Train Data	Test Data		
GLM	1.585727	1.694797	0.008708	-
GLM NN	1.719903	1.859394	167.224576	-
GAM-GeDS quadratic	1.557612	1.686492	0.671260	5

Table 2: Boosting Models

	Gamma Deviance			Internal knots p/boosting iter. (OwnerAge+VehAge)	Boosting iterations		
	Train Data	Test Data	Time (sec.)				
mboost	1.610290	1.676810	0.156095	4	100		
FGB-GeDS linear (2 starting knots)	1.575972	1.648345	0.130963	2	1		
FGB-GeDS w/mem. linear (1 starting knot)	1.575536	1.667158	0.129040	1	3		

Concluding remarks

- ✿ GeDS is able to perform well both with more intricate, wiggly data, as well as with more disperse data.
- ✿ Broad scope of applications (insurance data, materials science data
 - Further extensions:
 - ▶ Quantile regression (Hendricks and Koenker, 1992).
 - ▶ Varying coefficients regression (Hastie and Tibshirani, 1993).
 - ▶ Density estimation.

- Delong, E., Lindholm, M., & Wüthrich, M. V. (2021). Making tweedie's compound poisson model more accessible. *European Actuarial Journal*, 11(1), 185–226. <https://doi.org/10.1007/s13385-021-00264-3>
- Dimitrova, D. S., Kaishev, V. K., Lattuada, A., & Verrall, R. J. (2023). Geometrically designed variable knot splines in generalized (non-)linear models. *Applied Mathematics and Computation*, 436, 127493. <https://doi.org/https://doi.org/10.1016/j.amc.2022.127493>
- Dutang, C., & Charpentier, A. (2020). *Casdatasets: Insurance datasets* [R package version 1.0-11].
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine.. *The Annals of Statistics*, 29(5), 1189–1232. <https://doi.org/10.1214/aos/1013203451>
- Gu, C., & Wahba, G. (1991). Minimizing gcv/gml scores with multiple smoothing parameters via the newton method. *SIAM J. Sci. Comput.*, 12, 383–398. <https://api.semanticscholar.org/CorpusID:5789455>
- Hastie, T., & Tibshirani, R. (1990). Generalized additive models. *Monographs on statistics and applied probability*. Chapman & Hall, 43, 335.
- Hastie, T., & Tibshirani, R. (1993). Varying-coefficient models. *Journal of the Royal Statistical Society. Series B (Methodological)*, 55(4), 757–796. Retrieved November 6, 2023, from <http://www.jstor.org/stable/2345993>
- Hendricks, W., & Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity. *Journal of the American Statistical Association*, 87(417), 58–68. Retrieved November 26, 2023, from <http://www.jstor.org/stable/2290452>
- Kaishev, V. K., Dimitrova, D. S., Haberman, S., & Verrall, R. J. (2006a). *Geometrically designed, variable knot regression splines: Asymptotics and inference* (Statistical Research Paper No. 28). Faculty of Actuarial Science & Insurance, City University London. London, UK.
- Kaishev, V. K., Dimitrova, D. S., Haberman, S., & Verrall, R. J. (2006b). *Geometrically designed, variable knot regression splines: Variation diminish optimality of knots* (Statistical Research Paper No. 29). Faculty of Actuarial Science & Insurance, City University London. London, UK.
- Kaishev, V. K., Dimitrova, D. S., Haberman, S., & Verrall, R. J. (2016). Geometrically designed, variable knot regression splines. *Computational Statistics*, 31(3), 1079–1105. <https://doi.org/10.1007/s00180-015-0621-7>