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1. Motivation

s Geometrically Designed Splines (GeDS) (Kaishev et al., 2016, Dimitrova et al.,
2023), — accurate and efficient tool for regression problems involving one or two
covariates.
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1. Motivation

st Geometrically Designed Splines (GeDS) (Kaishev et al., 2016, Dimitrova et al.,
2023), — accurate and efficient tool for regression problems involving one or two
covariates.

KA

st¢ GeD spline methodology is extended further by:

1. GAM-GeDS: encompassing Generalized Additive Models (GAM), thereby making
GeDS highly multivariate.

2. FGB-GeDS: incorporating Functional Gradient Boosting (FGB), improving the
construction of the underlying spline regression model.
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1. Motivation

s Geometrically Designed Splines (GeDS) (Kaishev et al., 2016, Dimitrova et al.,
2023), — accurate and efficient tool for regression problems involving one or two
covariates.

st GeD spline methodology is extended further by:

1. GAM-GeDS: encompassing Generalized Additive Models (GAM), thereby making

GeDS highly multivariate.
2. FGB-GeDS: incorporating Functional Gradient Boosting (FGB), improving the
construction of the underlying spline regression model.

+ Applications in highly multivariate contexts: Al (e.g., image recognition/processing);
robotics (e.g. motion planning for humanoid robots).

+ Implemented in the R package GeDS, available from CRAN:
https://cran.r-project.org/package=GeDS
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2. GeDS estimation method
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2. GeDS estimation method

Free-knot spline regression technique based on a residual-driven (locally-adaptive)
knot insertion scheme that produces a piecewise linear spline fit, over which
smoother higher order spline fits are subsequently built.

Emilio Saenz Guillén emilio.saenz-guillen@bayes.city.ac.uk COMPSTAT 2024




Motivation GeDS GAM with GeDS FGB with GeDS nsurance data References

2. GeDS estimation method

Free-knot spline regression technique based on a residual-driven (locally-adaptive)
knot insertion scheme that produces a piecewise linear spline fit, over which
smoother higher order spline fits are subsequently built.

GeDS method unfolds into two phases:
+ STAGE A constructs a least squares linear spline fit to the data.

» Starting with a straight-line, LS fit, which is then sequentially “broken” by
iteratively introducing knots at those points ‘where the fit deviates most from the
underlying functional shape determined by the data’, based on a measure
defined by residuals.
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2. GeDS estimation method

Free-knot spline regression technique based on a residual-driven (locally-adaptive)
knot insertion scheme that produces a piecewise linear spline fit, over which
smoother higher order spline fits are subsequently built.

GeDS method unfolds into two phases:
+ STAGE A constructs a least squares linear spline fit to the data.

» Starting with a straight-line, LS fit, which is then sequentially “broken” by
iteratively introducing knots at those points ‘where the fit deviates most from the
underlying functional shape determined by the data’, based on a measure
defined by residuals.

+ STAGEB
» Builds smoother higher order spline fits using Schoenberg’s variation
diminishing spline (VDS) approximation, based on the linear fit from Stage A.
» For each higher spline order (quadratic, cubic...), compute the averaging knot
location and re-estimate the spline coefficients by LS.
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Properties of GeDS estimated knots and regression coefficients:

st Schoenberg variation diminishing optimality of the estimated knots (Kaishev et al.,
2006b).

N

& Asymptotic normality of estimators in the case of normal noise, which allows for the
construction of pointwise asymptotic confidence intervals that effectively converge
(Kaishev et al., 2006a).

N

% Asymptotic conditions on the rate of growth of the knots for negligible bias/variance
ratio (Kaishev et al., 2006a).
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3. Generalized Additive Models with GeDS
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3. Generalized Additive Models with GeDS

The Generalized Additive Model (GAM) assumes the response variable, Y ~ E.F.,
and relates its conditional expectation, u = E [Y| X], to the predictor variables,
X1, ..., Xp, via a link function g(-):

P
g(m) = a+ Y f3(X)), withE[f;(X;)] =0, j=1,..,P (1)
j=1

Hastie and Tibshirani, 1990 — local-scoring and backfitting algorithms in conjunction
with scatterplot smoothers, to fit GAMs.

GAM with GeD Splines: Local-scoring algorithm using GeD splines as
the function smoothers, f;, within the backfitting algorithm.
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3.1. Simulated data application
Consider the function (Gu and Wahba, 1991):

f(x) =2 xsin(m x xo) +exp(2z1) + O.Qxél(lo(l — mg))e + 10(103:2)3(1 — x)"°
—_— Y—
fo(zo) fi(z1) fa(z2)

- Example 1: Fity = f(x) +¢ e ~ .4 (0,02), and also include a noise predictor .
+ Example 2: replace fo(x() by a factor variable z with 4 levels.

» 2.1: Include the noise predictor x3.

» 2.2: Delete the noise predictor x3.

= Generate 1,000 random samples, {X;, Y;} ¥, with N = 400 for example 1 and
N = 200 for example 2; xq, x1, Z2, x5 ~ Uniform(0, 1).
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Example 1: GAM-GeDS (partial) fits

fo(Xo) = 2sin(nXo) , Xo € ¢(0, 1) fi(x1) =@ | %, ec(0,1) (%) = 0.2x3'(10(1 — x2))% + 10(10%,)°(1 - x,) "
— fi(x) — faxo)
o | —— GAM-GeDS fit —— GAM-GeDS fit
o~ 1 o 4
0
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Example 1, 2.1 & 2.2: MSE boxplots

Example 1 Example 2.1 Example 2.2
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4. Functional Gradient Boosting with GeDS
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4. Functional Gradient Boosting with GeDS

* Functional Gradient Boosting (FGB; Friedman, 2001).

% FGB-GeDS deals with major limitations of mainstream boosting algorithms:
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4. Functional Gradient Boosting with GeDS

* Functional Gradient Boosting (FGB; Friedman, 2001).

% FGB-GeDS deals with major limitations of mainstream boosting algorithms:

il “Prone to overfitting”

% Optimal number of boosting iterations determined by a stopping rule based on
a ratio of consecutive deviances.
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4. Functional Gradient Boosting with GeDS

* Functional Gradient Boosting (FGB; Friedman, 2001).

% FGB-GeDS deals with major limitations of mainstream boosting algorithms:

il “Prone to overfitting”

% Optimal number of boosting iterations determined by a stopping rule based on
a ratio of consecutive deviances.

il “Large number of parameters and unstable performance”

u% Strength of the base learners is automatically regulated by the GeDS
methodology and flexibly controlled through the GeDS parameters.
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4. Functional Gradient Boosting with GeDS

* Functional Gradient Boosting (FGB; Friedman, 2001).

% FGB-GeDS deals with major limitations of mainstream boosting algorithms:

il “Prone to overfitting”

% Optimal number of boosting iterations determined by a stopping rule based on
a ratio of consecutive deviances.

“Large number of parameters and unstable performance”

u% Strength of the base learners is automatically regulated by the GeDS
methodology and flexibly controlled through the GeDS parameters.

[ “Black-box models”

% Final FGB-GeDS boosted model expressed as a single spline model, which
simplifies its evaluation and enhances interpretability.
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4.1. Simulated data application

Consider the following function:

X
f1(X)=40m+4 s XEC(—Z, 2)

o [
Lr) -
g
m -

N C L 1 1 L 1

-2 -1 0 1 2

= For each, generate 1,000 random samples, { X;, Y;}¥.| with Y; ~ A (u;, o),
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Motivation GeDS GAM with GeDS FGB with GeDS
GeDS 10 int. knots
FGB-GeDS Init. learner with 2 int. knots + 1 boosting iter. with 8 int. knots

mboost (competitor)

10,000 boosting iter. with 36 int. knots per iter.
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% And setting mboost to have 10 int. knots p/boosting iter. (i.e., ~ FGB-GeDS):
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4.2 Task: Fourier Transform Computation of Materials
Science Data

Given asample, £ = {F(Q;), Qi}ﬁil, 0<@Q1<...<Qn< vaax, we are
interested in estimating the Fourier transform (imaginary part):

Qmax
Gy =2 /O F(Q) sin(Qr)dQ.

™

Assuming () max is known, this involves two steps:
Step 1. Estimate F'(Q) through a GeDS fit = S(Q) to the sample L.
Step 2. Compute G(r) using the fitted GeDS model, S(Q).
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4.2 Task: Fourier Transform Computation of Materials
Science Data

Given asample, £ = {F(Q;), Qi}i\;v 0<@Q1<..<Qn< vaax, we are
interested in estimating the Fourier transform (imaginary part):

Qmax
Gy =2 /O F(Q) sin(Qr)dQ.

™

Assuming () max is known, this involves two steps:
Step 1. Estimate F'(Q) through a GeDS fit = S(Q) to the sample L.
Step 2. Compute G(r) using the fitted GeDS model, S(Q).

For the time being, let us assume Qmax = @max, though in general Qmayx < @maxz
- Signal in the data prevails up to a certain point; beyond this, only noise remains.

- Sequential (and costly) data collection: cut off at the appropriate (Qymax for an
optimal experimental design.
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Step 1. Fit F(Q), e.g, with a GeDS model

NGeDS NGeDSboost mboost
231 knots initial learner w/.2 int. knots + 470 int. knots p/boosting iter.,
MSE: 0.4137057 1 boosting iter. w/468 int. knots 10,000 boosting iter.
o MSE: 0.1401462 MSE: 1.327903
o o o
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Step 2. Compute the Fourier transform

For the sin() transform,

Qrmax
Gy =2 [ F@sin(@na

of the function F'(Q), approximated by S(Q) of ordern = 2s,s = 1,2,3
have

—1)%2(n — 1) <= A an sin(t,;r)
G(T)%MZ@(tHn— Z G

i itn
' H(t —t)
;

)

wherer € R, p =k +n; éi, 1 =1,...,pare the GeDS regression coefficients.
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Step size of ris 0.01
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5. Insurance data
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5. Insurance data application

Motorcycle insurance data swmotorcycle available through the R package
CASdatasets (Dutang and Charpentier, 2020).

— We follow Delong et al., 2021 and model gamma claim sizes:
Gamma GLM regression + Gamma Neural Network regression.
mboost: FGB with P-splines.

GAM-GeDS.

FGB-GeDS.

®OOOO

* Response: ClaimAmount/ClaimNb, i.e., the average claim size.
* Covariates: OwnerAge; Gender; Area, RiskClass; VehAge.
* Train/Test split: 80%/20%.

» Simulate 100 different splits of data.
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Insurance data References
Table 1: GLM/GAM Models
Gamma Deviance Internal knots
Train Data Test Data Time (sec.) (OwnerAge+VehAge)
GLM 1.585727  1.694797 0.008708 -
GLM NN 1.719903  1.859394 167.224576 -
GAM-GeDS quadratic 1.557612  1.686492 0.671260 5
Table 2: Boosting Models
Gamma Deviance Internal knots Boosting
Train Data Test Data Time (sec.) p/boosting iter. iterations
(OwnerAge+VehAge)
mboost 1.610290  1.676810 0.156095 4 100
FGB-GeDS linear 1.575972  1.648345 0.130963 2 1
(2 starting knots)
FGB-GeDS w/mem. linear 1.575536  1.667158 0.129040 1 3

(1 starting knot)
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Concluding remarks

% GeDS is able to perform well both with more intricate, wiggly data, as well as with
more disperse data.

A

= Broad scope of applications (insurance data, materials science data

%

Further extensions:
» Quantile regression (Hendricks and Koenker, 1992).

P Varying coefficients regression (Hastie and Tibshirani, 1993).
» Density estimation.
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